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Preface

Trajectory-based formalisms used to describe non-relativistic quantum processes
are being continuously developed. Perhaps with increased emphasis in the last 15
years or so, since dealing with ‘‘classical’’ concepts is very appealing owing to the
physical insight or intuition one gains into the process under study. The three main
theoretical frameworks in use nowadays—apart from classical mechanics—but
with significant advances since their initial formulation are, in chronological order,
the Jeffreys–Wentzel–Kramers–Brillouin (JWKB) approach (1926), the Feynman
path integral approach (1948) based on earlier remarks by Dirac (1935), and the
Bohmian approach (1952) with its roots in the pioneering works of Madelung’s
hydrodynamic formulation of quantum mechanics (1926) and de Broglie’s pilot
wave theory (1927). Since then, many hybrid methods combining classical and
quantum mechanics have been developed, mainly to tackle an accurate description
of many–degrees-of-freedom systems.

The semiclassical JWKB approximation is a short-wavelength description of
quantum mechanics. The idea behind this approach is to build wave functions from
classical trajectories and, in a more pictorial way, to ‘‘sew quantum mechanical
flesh onto classical bones’’, quoting Berry and Mount (1972). From a mathematical
viewpoint, this treatment is based on asymptotic series. For simple bound systems,
quantization schemes are usually based on the JWKB method, the Bohr-Som-
merfeld quantization rule, or the multidimensional generalization of the latter,
namely the Einstein-Brillouin-Keller quantization rule. Near turning points this
approximation breaks down, giving rise to caustics or coalescence of classical
trajectories. In order to solve this problem, uniform approximations were devel-
oped by linearizing the interaction potential in the vicinity of turning points.
Taking into account this theoretical scheme, one of the processes that has been
more intensively studied is that of tunneling through a barrier. In classically for-
bidden regions, trajectories are analytically continued in the complex plane in
order to account for a quantum problem (for example, tunneling) that has no
classical analog. Furthermore, this approach has also been exploited within
semiclassical scattering, starting with Ford and Wheeler (1959), who explained the
rainbow effect observed in the gas phase. Nonetheless, from a practical point of
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view, it is easier to solve an initial-value problem than a boundary-value one. This
is the reason why real-time propagators are usually based on the so-called initial-
value representation in phase space. Alternatively, a very powerful and elegant
route to the semiclassical approach is Feynman’s path integral, which is another
formulation of quantum mechanics. In this formulation, the time propagator
arising from the integral representation of the Schrödinger equation is written in
terms of a path integral—or sum over classical paths—which is dominated by
those trajectories extremalizing the action. At present, one of the most important
applications of this approach is the calculation of the density matrix for many-
body (or many–degrees-of-freedom) systems—actually, the path-integral Monte
Carlo method used to deal with particle clusters is based on it.

Bohmian mechanics mainly arose as a result of the unsatisfactory interpretation
of standard quantum mechanics, which claimed that the wave function provides
the most general and complete physical information about a quantum system. This
led to a very exciting, never-ending debate focused on the completeness of the
wave function and the quantum theory of measurement. Within Bohmian
mechanics, a quantum system is described by a well-defined (in space and time)
trajectory, namely a quantum or Bohmian trajectory; the evolution of this trajec-
tory is determined by the wave function associated with the system. Quite recently,
a revival of the debate about the role played by this mechanics in quantum physics
can be found in the specialized literature. There are several groups for whom this
theory constitutes the natural framework of quantum mechanics, whereas other
groups consider it as an alternative and exact formulation that enables us to
characterize, interpret and predict quantum processes, standing on equal footing
with the standard theory. The central topic of this monograph is Bohmian
mechanics. This formulation has also received an important impulse over the last
15 years from different communities, which translates into an impressive and
fruitful theoretical development.

At present, there are several books on Bohmian mechanics, which somehow
summarize the trends mentioned above. The Quantum Theory of Motion (1993) by
Holland, The Undivided Universe: an Ontological Interpretation of Quantum
Theory (1993) by Bohm and Hiley, and Bohmsche Mechanik als Grundlage der
Quantenmechanik (2001) by Dürr—with its recently published English’s version,
Bohmian Mechanics (2009), in collaboration with Teufel—mainly deal with the
conceptual grounds and foundations of this theory as well as epistemological
problems. On the other hand, Wyatt’s monograph, Quantum Dynamics with Tra-
jectories (2005), tackles a more practical side of this theory, dealing with the
potential application of quantum trajectories in applied problems and stressing
their computational aspect as a means of solving the time-dependent Schrödinger
equation. A collection of chapters published very recently in two monographs,
Quantum Trajectories (2010) edited by Chattaraj and Applied Bohmian Mechan-
ics: From Nanoscale Systems to Cosmology (2012) edited by Oriols and Mompart,
give an ample overview of Bohmian mechanics in which the corresponding theory
has been successfully applied. However, in spite of the wide range of applications
within Bohmian mechanics covered by these books, from the foundations to
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computation, its interpretational importance is, somehow, lacking. It is missing in
the sense that one cannot find many applications and discussions of this trajectory-
based viewpoint within the context of realistic quantum phenomena, that are of
broad interest to different scientific communities.

Moreover, explaining the dynamics of quantum phenomena in terms of tra-
jectories has always attracted many physicists and chemists. The interpretations
arising from Bohmian mechanics are very intuitive, powerful, and simpler than
those provided by the standard version of quantum mechanics. Taking this into
account, the main purpose of this monograph, and what justifies its publication is
to provide and promote the interpretational aspects of Bohmian mechanics as an
alternative way of understanding quantum physics and gaining more physical
intuition, in particular, with regard to the visualization of the evolution of indi-
vidual systems (at the same level as Newtonian mechanics with respect to classical
statistical mechanics). Furthermore, and from our own longstanding experience in
the field, Bohmian mechanics can tackle any quantum problem that standard
quantum mechanics does, providing an alternative way of interpreting the phe-
nomenon under analysis. Obviously, the effort invested by many researchers in
standard quantum mechanics completely outweighs that invested in Bohmian
mechanics. However, we think that this situation will be corrected in the near
future owing to the fact that this theory appears in more and more modern quantum
mechanics textbooks at the introductory level (indeed, as John Bell suggested,
quantum mechanics should be studied from a Bohmian perspective in order to
make clear the most striking and strange features of that theory).

With this goal, and in order to be as self-contained as possible, this monograph
has been divided into two volumes. The first volume is focused on the classical and
quantum theoretical background, whereas the second volume is devoted to simple
and basic quantum processes to provide a new and alternative interpretation in
terms of quantum trajectories. The chapters of this first volume, which are intended
to be as self-conatined as possible, are organized as follows.

In Chap. 1, a brief survey of classical mechanics is presented ranging from
trajectories to ensembles of trajectories, paying attention to the dynamics or time
evolution of micro-objects when interacting with other micro-particles or with
some external potential function. Newtonian physics is based on the idea of a first
cause behind the motion of objects. However, perhaps one of the most elegant
ways of rationalizing physical laws arises through the calculus of variations, from
which such laws emerge as a consequence of the application of a variational
principle (in this sense, Appendix A reminds the reader of the essentials of the
calculus of variations for variables and fields). The three main formulations of
classical mechanics, that is, Lagrangian, Hamiltonian, and Hamilton–Jacobi for-
mulations, are briefly set out, since they represent the fundamental building blocks
of any dynamical theory in terms of time or energy as primary parameters. Very
often a first classical approach to a given quantum problem provides us with a
complementary understanding of the corresponding dynamics, which results in a
considerable gain in intuition—in particular, if the phase-space formulation is
used. When dealing with ensembles of trajectories, we expect a natural transition
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from regular to chaotic motion owing to the underlying stochasticity present in
dynamical (Hamiltonian) problems with two or higher dimensions. Furthermore,
the extension to classical statistical mechanics, where the motion is deterministic
but unpredictable, is analyzed in terms of the Liouville equation and a field theory.
Several important aspects of continuum mechanics are very briefly commented on
owing to its basic importance in quantum fluid dynamics.

In Chap. 2, the dynamics of open classical systems are introduced. Open
classical systems are usually defined as those where the system of interest is
surrounded by an environment at a certain temperature (heat bath or reservoir),
exchanging energy in both directions. Strictly speaking real physical systems do
not exist in complete isolation in Nature; all physical systems are open systems
since the interaction with their environment can never be totally neglected. The
mathematics required to understand this dynamics is the theory of probability and
stochastic processes. This theory is briefly described in Appendix B since it plays a
fundamental role in any classical or quantum dynamics. When a ‘‘coarse-grained’’
description is used, where we focus only on the dynamics of the system of interest,
neglecting the details of the time evolution of the environment, two types of
mechanics arise naturally: the dissipative and stochastic mechanics. In both types
of mechanics, there are three standard routes to introduce dissipation and/or sto-
chasticiy. First, from a phenomenological viewpoint, empirical equations are
introduced, such as the standard Langevin equation, where a few parameters are
required to describe the system–environment interaction. Second, starting from the
Liouville equation, which is satisfied by any dynamical variable in phase space,
projection operator techniques are applied until a generalized Langevin equation is
finally reached. Third, when the starting point is a conservative many-body
problem (system plus environment is an isolated system), dissipative forces can be
obtained as well as an external stochasticity owing to the fluctuations or noise of
the heat bath. A clear distinction between the two mechanics and some links
between these three different approaches are presented and discussed.

In Chap. 3, some elements of quantum mechanics are presented. Time-inde-
pendent and time-dependent Schrödinger equations are derived from the so-called
Hamiltonian analogy through the calculus of variation together with de Broglie’s
ideas of associating a wavelength with matter particles. Some basic notions of
wave mechanics, current densities, ensemble distributions and density matrix in
phase space are also reviewed. Special emphasis is placed on some approaches to
quantum mechanics in which classical concepts and/or trajectories are the main
ingredients such as the path integral formulation, semiclassical mechanics and, the
eikonal approach.

Chapter 4 is devoted to wave optics in connection to quantum mechanics. The
issues covered in this chapter are almost entirely based on the physics described by
the wave equation. This allows us to understand and offer an alternative optical
perspective of many of the basic elements and concepts found in quantum
mechanics within the context of any wave theory, and not as something purely
specific to quantum physics. According to Ballentine, quantum phenomena can be
illustrated by means of three traits: discreteness, diffraction, and coherence. Thus,
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the chapter is organized in such a way that shows how such features and related
concepts are already present in wave optics, though in a general way. Thus,
starting from the main ingredients of wave optics, namely Maxwell’s equations
and the wave equation, we will move into the superposition or Huygens–Fresnel
principle, very closely connected to the notion of coherence and the appearance of
interference and diffraction phenomena. Regarding discreteness, it is not necessary
to go as far as the photoelectric effect, but we already find it in optical waveguides,
which are the optical analogs of quantum ‘‘bound’’ systems. In order to cover the
full spectrum of phenomena that can be found in quantum mechanics, we also
revisit the Goos–Hänchen effect or the Hartman effect, which are good examples
related to optical tunneling. Furthermore, a direct link to the language of quantum
mechanics can be established through the hydrodynamical formulation of elec-
tromagnetism, a generalized formulation based on the so-called Riemann–Silber-
stein vector.

The dynamics of open quantum systems is briefly treated in Chap. 5. The
system-plus-reservoir model used in the classical context is also followed here in
quantum mechanics, and dissipation and stochasticity are easier to tackle and
understand. Both system and reservoir are in continuous interaction and the
effects—coherence loss or decoherence, population transfer, and/or (system–
environment) energy exchange—arising from that interaction will depend to a
greater or lesser extent on the coupling strength and its intrinsic nature. The system
time-evolution is not unitary and therefore cannot be described in terms of the
Schrödinger equation. In these cases, it is then necessary to resort to statistical
quantum methods invoking, for example, the density matrix and Langevin for-
malisms and/or introducing, in general, quantum stochasticity into the time-evo-
lution equations: the Linblad equation, quantum Langevin-type equations, and so
on. The energy transfer from the system to the environment is termed quantum
relaxation or damping. If there is no chance for the energy to move backwards into
the system, the unidirectional energy flow into the reservoir is then called quantum
dissipation. On short time scales, the distinction between quantum relaxation and
dissipation is obviously unclear. Under certain conditions the duration of the
reservoir correlations is very short compared to the dynamical evolution of the
system. This leads to a total memory loss of the bath dynamics, which gives rise to
a subsequent irreversible loss of coherence and energy (or population) relaxation
in the system. This is called a Markovian regime. Within this regime, the time
evolution of the system depends only on the present state of the system; this is
called a Markovian process. As will be seen, when this happens, the system
dynamics can be characterized by (relatively) simple Markovian master equations,
where one does not need to take into account the reservoir dynamics, and its effects
on the system are described by means of certain operators. In analogy to open
classical systems, there are also three main different approaches to dealing with
quantum dissipative dynamics: (i) effective time-dependent Hamiltonians, (ii) the
nonlinear Schrödinger equation, and (iii) the system-plus-reservoir model within a
conservative scenario. In particular, the so-called stochastic Schrödinger equation,
written in terms of an Itô differential equation, gives rise to quantum trajectories,
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not to be confused with those coming from Bohmian mechanics. Finally, in this
chapter as well as in Appendix B the measurement process is also very briefly
discussed through the introduction of the so-called weak measurement due to
Aharonov, Albert and Vaidman, in distinction to the more standard von Neumann
strong measurement, since observing very weak effects is becoming more and
more important at present.

Chapter 6 can be considered the main chapter of this monograph; to some
extent, the previous chapters have been written for the purpose of providing the
reader, as far as possible, with the background necessary to better understand the
approach developed by David Bohm, nowadays known as Bohmian mechanics. He
essentially based his theory on the assumption that a quantum system consists, at
the same time, of a wave and a particle. The wave evolves according to Schrö-
dinger’s equation and the particle moves according to a certain guidance condition
(quantum trajectories), which makes the particle motion dependent on the wave
evolution. Although Bohmian mechanics is usually regarded as a ‘‘reinterpreta-
tion’’ or an alternative picture of standard quantum mechanics, it is also common
to refer to it as a ‘‘theory’’ in order to stress the conceptual difference between the
two approaches to the microscopic world. Bohm’s ideas were applied to different
prototypical models of quantum mechanics during the late 1970s and, particularly,
the 1980s and early 1990s, and the attention paid by the scientific community was
not very great. However, in the last ten years or so, Bohmian mechanics has passed
from being merely a way to formulate a quantum mechanics ‘‘without observers’’
to become a well-known (and increasingly accepted) theoretical framework used
as a source of new quantum computational methods as well as new quantum
interpretations. This chapter ends by considering open quantum systems from this
point of view.

Finally, Chap. 7 has been organized to take into account a gradual transition
from simple (light) rays to hydrodynamic (photon) trajectories/paths, i.e., from
geometric optics to what we shall denote as hydrodynamic optics. This trajectory-
based description is analyzed for the propagation of plane waves and Young-type
experiments with polarized light, the latter being intimately related to the so-called
Arago–Fresnel laws of diffraction for polarized light. Afterwards, a brief account
on the relation between hydrodynamic optics and the formulation based on the
Riemann–Silberstein vector is given. The reported diffraction pattern for the two-
slit experiment has been very recently inferred and explained in terms of photon
paths from experiment. The weak measurement of an observable (position and/or
momentum) for a quantum system is preselected in an initial state and postselected
by a strong measurement in a final different state. Experiments of this kind have
also led to a direct measurement of the photon quantum wave function. In our
opinion, Bohmian mechanics can again undergo a new revival thanks to these
experiments (where weak measurements are carried out), which can provide
information on quantum trajectories of the underlying dynamics of any quantum
process.

This monograph is the result of more than 15 years working on trajectory-based
formalisms, in particular, on Bohmian mechanics. Concerning citations, we have

xii Preface

http://dx.doi.org/10.1007/978-3-642-18092-7_6
http://dx.doi.org/10.1007/978-3-642-18092-7_7


tried to furnish a historical development of the different topics presented here.
However, to provide a selection of the very last references in very active fields is
really difficult. We apologize to those who think they should be cited and are not.
During this long but exciting time, we have benefitted from discussions with many
colleagues from abroad and from Spain. In this sense, we would like to
acknowledge fruitful discussions and collaborations with J. A. Beswick, J.
M. Bofill, F. Borondo, M. Božić, P. Brumer, J. Campos-Martínez, P. K. Chattaraj,
C. C. Chou, M. Davidović, D. Dürr, E. R. Floyd, X. Giménez, S. Goldstein, T.
González-Lezana, B. J. Hiley, B. K. Kendrick, J. Margalef-Roig, B. Poirier, E.
Pollak, O. Roncero, J. S. Sánchez-Gómez, D. J. Tannor, T. Uzer and R. E. Wyatt.
Also, we would like to thank all members (past and present) of the Departamento
de Física Atómica, Molecular y de Agregados of the Instituto de Física Funda-
mental (CSIC) in Madrid, where this work has been carried out from its inception,
benefiting support from the projects FIS2007-62006, FIS2010-18132, FIS2010-
22082 and FIS2011-29596-C02-01 from the Ministerio de Ciencia e Innovación
(Spain), a ‘‘Ramón y Cajal’’ Research Fellowship (A. S. S.), and the COST Action
MP1006 ‘‘Fundamental Problems in Quantum Physics’’. Special thanks go to
Gerardo Delgado-Barrio and Pablo Villarreal, founding fathers of this department,
for their continuous support of and enthusiasm for our work. Finally, we thank A.
Lahee, our Editor, for her enthusiasm when we proposed the monograph to her, as
well as her patience and for extending —several times— the deadline for finishing
this project.

Madrid, October 2011 Ángel S. Sanz
Salvador Miret-Artés
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Chapter 1
From Trajectories to Ensembles in Classical
Mechanics

1.1 Introduction

Our physical intuition is based on our everyday experience. From this viewpoint,
Newton’s mechanics seems to be the natural theoretical framework to describe the
objects of classical mechanics. This framework, grounded on the mechanical laws
for celestial bodies discovered by Copernicus [1] and Kepler [2], as well as in the
rational “thought” systems formerly established by Galileo [3] and Descartes [4],
is summarized by the well-known Newton’s laws of motion [5]. The motion of
(classical) objects is explained in terms of their response to the interactions among
themselves or other external interactions. Regardless of whether such interactions
are described in terms of forces at a distance, (potential) fields or particle exchanges,
the evolution of a body is thus seen as the consequence or effect of an interaction
on it (the cause). The causality principle enjoys of a wide acceptance, which has
led to also consider that physical processes are local, i.e., what happens in certain
space region does not affect what may happen in other distant space regions out of
the corresponding light cone. This is not the case, though, in quantum mechanics
(see Chap. 3)—neither in Bohmian mechanics (see Chap. 6)—, where nonlocality
constitutes a very distinctive feature, as shown by Bell in the 1960s [6, 7].

Newtonian physics is therefore based on the idea of a first cause behind the
motion of objects. Actually, Newton postulated a relationship between the acting
force (cause) and the rate of change with time of the momentum (effect) rather
than its velocity. This approach, however, is not unique when formulating classical
mechanics, as mentioned before. An alternative and conceptually different approach,
possibly one of the most elegant ways to rationalize physical laws, arises through the
calculus of variations. Within this formulation, such laws emerge as a consequence
of the application of a variational principle [8–10]. The calculus of variations allows
us to determine the system dynamics in terms of some characteristic quantities,
which are found to be either extremal (maximum, minimum or saddle-point values)
or stationary (their rate of change is zero). This constitutes a very important concep-
tual difference with respect to the Newtonian formulation: now the dynamics arises
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2 1 From Trajectories to Ensembles in Classical Mechanics

as a consequence of a need—the physical solution is obtained via extremization
of a quantity—rather than an effect from external causes. The problem of finding
geodesics [11], i.e., the curves describing the shortest distance between two points on
a given space surface constitutes a well-known application of the calculus of varia-
tions. Another important application is that of finding the fastest descendent curve or
brachistochrone curve [12, 13] described by a body which is falling under gravity and
constrained to move along the curve joining two points. These problems summarize
the essence of two of the most fundamental principles in physics, which precisely
arise from the calculus of variations. On the one hand, the least time principle or
Fermat’s principle (see Chap. 4), which states that light always follows the path of
shortest optical length connecting two points (where the optical length depends on the
material constituting the medium along which it propagates) [14], and was formerly
proposed to describe reflection by Hero of Alexandria in his Catoptrica (circa 60 AC)
[15] and later on expanded to refraction by Ibn al-Haytham “Alhazen” in 1021 in his
Book of Optics [16]. On the other hand, its mechanical counterpart, the least action
principle [8], which is generally known in the form given formerly by Maupertuis
[17, 18] and, about a century later, by Hamilton [19, 20] for the mechanical action.

When going through the different widely accepted (and used) formulations of
classical mechanics, the principles upon which they have been risen become very
apparent. For example, though different in their starting point, Newtonian and
Lagrangian mechanics make emphasis on the concept of time evolution. Indeed,
the former arises very nicely from the latter after applying the calculus of variations
via extremization with respect to time. The leading role of time in these formula-
tions is also noticeable in their own mathematical structure, which relies on sets of
second-order differential equations. The solutions to these equations are determined
by specifying the value of positions1 and velocities at a certain time—although the
velocities are not totally independent of the positions, since the former are just the first
time-derivative of the latter. This mechanistic view of physics is well summarized
by Laplace’s famous words [21]:

We may regard the present state of the universe as the effect of the past and the cause of the
future. Given for one instant an intelligence which could comprehend all the forces by which
nature is animated and the respective positions of the beings which compose it, if moreover
this intelligence were vast enough to submit these data to analysis, it would embrace in the
same formula both the movements of the largest bodies in the universe and those of the
lightest atom: to it nothing would be uncertain, and the future as the past would be present
to its eyes.

On the other hand, the Hamiltonian and Hamilton–Jacobi formulations are built
upon the concept of energy conservation: the motion laws arise via extremization
with respect to energy, a property intrinsic to a given system (regardless of whether
it can also be dissipated or absorbed). In this way, instead of positions and velocities,

1 In general, from now on, any variable x (or its associated generalized coordinate, q) will be
regarded as a “position”, independently of whether it refers to a “true” position or to any other
coordinate describing a physical system. The evolution of this variable will be given by a differential
equation.

http://dx.doi.org/10.1007/978-3-642-18092-7_4
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the physical system is described by a set of generalized coordinates and momenta,
which are independent and obey first-order differential equations.

The Hamilton–Jacobi formulation of classical mechanics establishes a very direct
link between energy and time, which are considered as conjugated. This idea has a
particular relevance in quantum mechanics. For example, the passage from the time-
independent Schrödinger equation to the time-dependent one, or the time-energy
uncertainty relation are based on it. Furthermore, this formulation allows us to
establish the direct link between classical and quantum mechanics [8, 10] (actually,
Schrödinger’s wave equation was formerly derived starting from this formulation, as
will be seen in Chap. 3) as well as Bohmian mechanics (see Chap. 6). The Hamilton–
Jacobi formulation of classical mechanics (as well as the Hamiltonian one) is also
very close to optics, this connection constituting a fundamental step to reach a deeper
understanding of the meaning of the concept of duality that appears when dealing
with both matter waves and radiation. The relationship comes from the possibility
of describing motion by means of a similar wave-like language; in optics waves
are surfaces of constant phase (see Chap. 4), while in classical mechanics the role
of the wave is played by surfaces of constant action. Particle trajectories are then
“rays” perpendicular to such surfaces at each time in the same way as optical rays are
perpendicular to constant phase surfaces—later on, in Chap. 6, Bohmian trajectories
are seen to be perpendicular to the surfaces of constant quantum phase.

Classical mechanics is also used to describe the dynamics or time evolution of
micro-objects when interacting with other micro-particles or with some external
potential function. This is mainly the issue under discussion in this Chapter, since
many times it happens that a first classical approach to a given quantum problem
provides a better understanding of its dynamical behavior. Following this scheme,
the transition from regular to chaotic motion and to intrinsic stochasticity will be
also analyzed. Extension to classical statistical mechanics where the motion is deter-
ministic but unpredictable presented in terms of the Liouvillian dynamics will be
carried out. Certain criteria to discern if a system has to be considered as classical or
quantum will also be presented. In order to be self-contained and pay special atten-
tion to the ensemble of trajectories, certain aspects of continuum mechanics will be
briefly exposed to better understand quantum fluid dynamics.

1.2 Fundamental Grounds of Classical Mechanics

1.2.1 Hamilton’s Principle and Equations of Motion

One of the most important application of the calculus of variations (see Appendix A)
is the derivation of the mechanical equations of motion avoiding the use of the concept
of Newtonian force. This leads to the least action principle, also known as Hamilton’s
variational principle or Hamilton’s principle, which states [22] that

http://dx.doi.org/10.1007/978-3-642-18092-7_3
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[. . . ] of all the possible paths along which a dynamical system may move from one point
to another within a specified time interval (consistent with any constraints), the actual path
followed is that which minimizes the time integral of the difference between the kinetic and
potential energies.

This simple idea constitutes one of the most general and fundamental postulates of
physics, not only because all of classical mechanics can be derived from it, but also
quantum mechanics (see Chap. 3).

Mathematically, for a classical N-dimensional system (i.e., a system characterized
by N degrees of freedom regardless of what they may represent), Hamilton’s principle
applies as follows. Consider the functional

S[L] ≡
∫ tb

ta
L(q, q̇, t)dt, (1.1)

where t denotes time, q = (q1, q2, . . . , qN ) stands for a set of generalized coordinates
describing the system and q̇ = (q̇1, q̇2, . . . , q̇N ), with q̇i ≡ dqi/dt , are the associated
(generalized) velocities [8, 10]. In (1.1),

L(q, q̇, t) = T (q, q̇, t)− V (q, t) (1.2)

is the so-called Lagrangian function, with T and V being the kinetic and potential
energies, respectively. In generalized coordinates, the kinetic energy may depend on
both q and q̇—for example, in Cartesian coordinates it only depends on the velocities
and not on the positions, but in spherical coordinates the dependence is on both—,
while the potential energy always depends on q. Moreover, these energies may also
depend explicitly on time, this being the case of dissipative systems (see Chap. 2).

Applying the calculus of variations to (1.1), one obtains

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0, i = 1, 2, . . . , N . (1.3)

This set of equations are the so-called Lagrange equations of motion of classical
mechanics (within its Lagrangian formulation). They can also be expressed as

∂T

∂qi
− d

dt

∂T

∂q̇i
= ∂V

∂qi
, i = 1, 2, . . . , N , (1.4)

in terms of the kinetic and potential energies. If T is given in Cartesian coordinates
(i.e., T =∑

i mi ẋ2
i /2), then (1.4) acquires the more familiar form

d

dt
(mi ẋi ) = − ∂V

∂xi
, i = 1, 2, . . . , N , (1.5)

where Newton’s equations of motion or Newton’s second law is readily recognized.
According to Hamilton’s principle, classical trajectories are the curves for which

http://dx.doi.org/10.1007/978-3-642-18092-7_3
http://dx.doi.org/10.1007/978-3-642-18092-7_2
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(1.1) becomes an extremal when going from qa = q(ta) to qb = q(tb). The func-
tional S[qb; qa] is then said to be a first-order invariant under small perturbations of
the trajectory q(t). This is equivalent to find the curves qi (t) satisfying the set of
equations (1.3) or, equivalently, (1.5). Since (1.3) consists of a set of N second-order
differential equations, in order to obtain a complete solution the value of the qi and
that of their first derivatives, q̇i, have to be specified at a certain time, usually the
initial time (t0).

After Jacobi, the nature of the extrema found in the calculus of variations can be
determined from an eigenvalue analysis of the matrix associated with the quadratic
form that comes from the so-called second variation or third term of the action
integral expansion in terms of the displacements. Furthermore, it can be shown
that this quadratic form in the displacements of all possible paths around a given
trajectory has as many negative eigenvalues as conjugate points can be found along
the trajectory. These points are defined when one of the eigenvalues vanishes.

The system dynamics can be equivalently described within the Hamiltonian
framework. In this case, first the canonical momentum along a particular trajectory
q = q(t) is determined by means of the relation

pi = ∂L

∂q̇i
, i = 1, 2, . . . , N . (1.6)

Then, the system Hamiltonian is obtained by means of the Euler–Legendre transfor-
mation

H(q, p, t) =
N∑

i=1

pi q̇i − L(q, q̇, t). (1.7)

Substituting (1.7) into (1.1) and then applying Hamilton’s principle, a set of 2N first-
order differential equations is obtained, namely the Hamilton or canonical equations
of motion of the Hamiltonian formulation of classical mechanics,

q̇i = ∂H

∂pi
, (1.8a)

ṗi = −∂H

∂qi
. (1.8b)

In order to solve these equations of motion, a set of initial conditions (q0, p0) =
(q(t0), p(t0)) has to be specified. Equations (1.8) can be regarded as a vector field in
phase space,

F ≡ (q̇, ṗ) = (∇p H,−∇q H), (1.9)

where ∇p ≡ (∂/∂p1, ∂/∂p2, · · · , ∂/∂pN ) and ∇q ≡ (∂/∂q1, ∂/∂q2, · · · , ∂/∂qN )

(from now on, the notation ∇ ≡ ∇q will be considered). That is, the evolution of
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the physical system can be related to that of a flow in phase space, which is strongly
connected with the also often used matrix or symplectic notation of Hamilton’s
equations of motion [23] (see Sect. 1.3.1). The opposite signs in the two terms of (1.9)
have some important consequences when analyzed in the corresponding symplectic
geometry. A system is said to be a Hamiltonian system when the vector field is
defined by the above Hamilton equations. Hamiltonian systems constitute a special
class of dynamical systems characterized by a smooth vector field in phase space.

Due to the symmetry displayed by the canonical equations when compared to
the Euler–Lagrange ones as well as the fact that they are first-order differential
equations for a set of 2N independent variables (the Lagrangian coordinates and
momenta do not constitute a set of independent variables), Hamilton’s formulation
results simpler to study the dynamics of classical systems. Nevertheless, there are
circumstances where working with them is not appropriate or comfortable, but it
is more convenient to carry out a variable transformation from (q, p) to a set of
new variables (q ′, p′), whose equations of motion are simpler and more insightful
(physically). In this regard, canonical or contact transformations constitute a suitable
type of transformation, for the new variables will also be canonical. That is, given
the canonical transformation q = q(q ′, p′) and p = p(q ′, p′), then

q̇ ′i =
∂H ′

∂p′i
, (1.10a)

ṗ′i = −
∂H ′

∂q ′i
, (1.10b)

where H ′ is the Hamiltonian associated with the (new) canonical variables q ′and p′.
Actually, (1.10a) and (1.10b) can also be derived by using Hamilton’s principle
provided that the relation

N∑
i=1

pi q̇i − H =
N∑

i=1

p′i q̇ ′i − H ′ + dG

dt
(1.11)

is satisfied. Here G is an arbitrary differentiable function depending on q, p, q ′
and p′ (eventually it might also depend on t). A sufficient and necessary condition
for the transformation to be canonical is that at least G depends on one of the old
variables and another of the new ones. Then, G is called the transformation generating
function, which might also be accompanied by a term describing an Euler–Legendre
transformation required to change accordingly the right-hand side of (1.11).

Consider the generating function G = S(q, p′, t) together with the Legendre
transformation −p′q ′. Substituting them into the right-hand side of (1.11) and then
rearrange terms, leads to

pi = ∂S

∂qi
, (1.12a)
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q ′i =
∂S

∂p′i
, (1.12b)

H ′ = H + ∂S

∂t
. (1.12c)

As can be noticed, if H ′ is forced to be identically zero, the Hamilton equations
corresponding to the new variables also vanish, i.e.,

q̇ ′i =
∂H ′

∂p′i
= 0, (1.13a)

ṗ′i = −
∂H ′

∂q ′i
= 0, (1.13b)

and therefore the q ′i and the p′i constitute a set of 2N non-independent constants
(q ′i = βi , p′i = αi ), which are related through (1.12b) (i.e., βi = ∂S/∂αi ). The
problem then consists of solving the partial differential equation

H

(
q,
∂S

∂q
, t

)
+ ∂S

∂t
= 0, (1.14)

where S is a function that only depends on the old coordinates. Equation (1.14) is the
so-called Hamilton–Jacobi equation [8–10], more familiar when it is expressed as

−∂S

∂t
= (∇S)2

2m
+ V, (1.15)

with ∇S ≡ ∂S/∂q = (∂S/∂q1, ∂S/∂q2, · · · , ∂S/∂qN ). Note that, computing the
total derivative dS/dt by means of (1.12a) and (1.12b), and then integrating over time,
the resulting expression is (1.1). Therefore, the function S, the so-called Hamilton’s
principal function, is the classical action of the system. The lack of uniqueness of
the classical function is well known. Pertinent discussions about this issue can be
found in any standard textbook about classical mechanics.

Within this Hamilton–Jacobi formulation of classical mechanics, the particle
equation of motion is given by (1.12a), the so-called Jacobi’s law, as a function of
the canonical coordinates (q, p) and Hamilton’s principal function, S. The motions
generated by (1.12a) present the particularity that any trajectory is always perpen-
dicular to the surfaces of constant S, which allows us to construct in a very simple
fashion families of trajectories by considering a starting point and taking the normal
to a series of surfaces with constant S. This is the so-called Huygens’ construc-
tion (see Sect. 4.3.1). More formally, the trajectories are the characteristics of the
Cauchy problem associated with the Hamilton–Jacobi equation. The orthogonality
condition between constant S surfaces and trajectories remains valid even in those
cases where (1.12a) is modified by the presence of electromagnetic fields or other

http://dx.doi.org/10.1007/978-3-642-18092-7_4
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more complicated situations, such as arbitrary many-body systems acted by time-
dependent potentials. In such cases, it is always possible to define a new function
S′ by means of non-Euclidean metrics, so that the corresponding trajectories will be
orthogonal to surfaces with constant S′. The speed of the wavefront or constant S
surface is given by−(∂S/∂t)/|∇S|, which can be related to particle velocities. This
way of interpreting S allows us to establish a narrow relationship between classical
mechanics and geometric optics (see Chap. 7), where the rays are orthogonal to the
wavefronts or can be treated as such by means of a generalized geometry [24, 25],
thus anticipating the possibility of a wave theory of matter, materialized in the formu-
lation of the wave equation by Schrödinger. This connection between mechanics and
optics becomes more apparent in the case of conservative systems, where the total
system energy, E, evaluated along a trajectory remains constant in time. In this case,
from the total time-derivative of (1.1), d S/dt = L , one reaches

∂S

∂t
= L −

N∑
i=1

pi q̇i = −H. (1.16)

Now, since H describes the system energy, in the case of a conservative system
H = E and therefore

−∂S

∂t
= E = constant. (1.17)

Equation (1.15) then becomes

E = (∇S)2

2m
+ V, (1.18)

which is the so-called time-independent Hamilton–Jacobi equation. Because of
(1.17), it is also common to express the classical action by separating its space
and time dependent parts as

S =W(q)− Et, (1.19)

where W is the so-called reduced Jacobi function or Hamilton’s characteristic func-
tion. Thus, for conservative systems, (1.12a) can also be expressed as p = ∇W/m,
which does not depend explicitly on time.

The Hamilton–Jacobi formulation results very useful in one-dimensional prob-
lems and separable higher-dimensional ones. With no loss of generality, consider the
former. From (1.18) together with (1.12a),

p = ±√
2m[E − V (q)]. (1.20)

It is straightforward now to obtain the corresponding classical trajectories from this
expression by integrating in time and once an initial condition q0 is specified (indeed,
two trajectories are obtained with opposite momentum). Also note that the initial

http://dx.doi.org/10.1007/978-3-642-18092-7_7
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value of the momentum, p0, is fixed by the condition of the energy conservation—
more specifically, it is p0 = ±√2m[E − V (q0)]—and, therefore, needs not to be
supplied initially. This constitutes an important reduction of the dimensionality of
the problem in the sense that it will avoid it to solve two differential equations, as
it happens within the Hamiltonian formulation. Accordingly, the trajectories arise
from the integral

∫ q=q(t)

q0=q(t0)

dq ′√
2m[E − V (q ′)] = t − t0, (1.21)

where the left-hand side is linear with time. These trajectories are allowed to cross
at the same time in the configuration where they are defined (e.g., two trajectories
with opposite momentum, as given by (1.20)). However, they cannot cross in phase
space, this being called a congruence.

The Lagrangian, Hamiltonian and Hamilton–Jacobi formulations of a given
problem are all non-unique, as it has been extensively discussed in the literature.
This becomes apparent through the so-called inverse problem, which consists of
finding out the Lagrangian or Hamiltonian associated with the equations of motion
describing a system. In principle, there is an infinite set of Lagrangians, Hamiltonians
or classical actions that can be assigned to a dynamical system. Not all of them, of
course, will be physically acceptable, since they may lead to singular or pathological
behaviors, or they could violate some physical requirements. In spite of this, there is
an equivalence among them, which arises from the fact that the equations of motion
they generate are identical. In this regard, a set of Lagrangians or Hamiltonians are
said to be q-equivalent if they generate the same equations of motion in the coordinate
space—similarly, p and (q, p)-equivalences can also be defined.

The integrability (regularity) or non-integrability (chaoticity) of a dynamical
system depends on the constant of motion characterizing such a system. The formal
condition for a function A to be a constant of motion is

d A(q, p)

dt
= ∂A

∂t
+ {A, H} = 0, (1.22)

with ∂A/∂t = 0 (no explicit dependence on time) and where the Poisson bracket for
any two functions A and B in phase space is defined as

{A, B} ≡
N∑

i=1

(
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

)
. (1.23)

In this way, for integrable or regular systems more than one constant of motion can be
found apart from the total energy, while the latter is the only constant of motion in the
case of non-integrable or chaotic systems. Thus, if more than one constant of motion
exist, they will be independent, i.e., they cannot be expressed as a linear combi-
nation of the remaining ones. Furthermore, if the Poisson bracket of two constants
of motion vanishes, they are in involution. If the number of constants of motion in
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involution is the same as the number of degrees of freedom describing the system,
the corresponding trajectories will then be confined to an N-dimensional manifold
or N-dimensional torus. This is the formal condition of integrability of a dynamical
system. For this kind of systems, it is common to change to the so-called action-angle
variables. The angle variables, usually denoted by w = (w1, · · · , wN ), vary from
0 to 2π and play the role of position coordinates. Their corresponding canonically
conjugated coordinates are the action variables, denoted by I = (I1, · · · , IN ), and
that play the role of a momentum with respect to w. Taking into account these new
variables, Hamilton’s equations of motion (1.8) read as

ẇi = ∂H

∂ Ii
= ωi , (1.24a)

İi = − ∂H

∂wi
= 0. (1.24b)

where ωi are the frequencies characterizing the dynamical system. The complete
solution of these equations is given by the quantities wi = ωi t + φi , with arbitrarily
chosen phases φi . In general, the ratios between frequencies for a particular torus
are irrational numbers. However, these ratios become rational numbers for special
values of the constants of motion, giving rise to classical resonances. Because angle
variables are periodic, with period 2π in each one of the angles, it is quite natural
to make Fourier expansions of q and p as a function of w. The motion is thus called
multiperiodic. Alternatively, this frequency analysis can also be obtained from the
the power spectrum of the autocorrelation function of the dynamical variables (see
Appendix B).

Periodic orbits, or solutions of the equations of motion with final positions and
momenta coinciding with their initial counterparts, play a fundamental role in clas-
sical as well as quantum mechanics. They are densely distributed in phase space
for a given mechanical system. The study of their stability is crucial to have a
complete understanding of the underlying (regular or chaotic) dynamics. Further-
more, in general, a mechanical system can only be quantized if it is integrable, for
there is no method to date to quantize non-integrable (chaotic) systems in a consistent
manner—except for those cases where periodic unstable trajectories can be found

It is also worth mentioning that integrable systems are not always separable like,
for example, the Toda lattice problem consisting of a one-dimensional lattice or chain
of many particles coupled by nonlinear springs, the soliton being a special solution.

1.2.2 Classical Dynamics in Complex Phase Space

Usually, the physical properties of a dynamical system are studied by considering
real-valued Hamiltonians (within the Hamilton formulation of classical mechanics),
which are functions of a certain set of (also real-valued) coordinates and momenta.
However, when dealing with microscopic processes, quantum particle dynamics will
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develop in regions of the configuration and/or phase space that can be either allowed
or forbidden classically depending on the value of the (classical) total energy. For
example, beyond the turning points where the total energy is equal to the potential
energy function, particles may explore regions that are classically forbidden (i.e.,
unaccessible for a classical trajectory). In such cases, if one is interested in a clas-
sical description of the corresponding dynamics, an analytical continuation of the
dynamical variables is required. Also, there are situations where a complexifica-
tion of the Hamiltonian turns out to be more efficient to explain certain processes
and phenomena in quantum mechanics. For example, complex potentials (optical
models) have been used to account for the presence of resonance phenomena in
nuclear, atomic or molecular scattering as well as in chemical reactions [26], to
avoid boundary effects in wave-packet propagation methods (absorbing boundaries)
[27], as the basis to build up semiclassical coherent-state propagation schemes
[28, 29] or to analyze and compute complex eigenvalues [30–35]—see also the
discussion in Sect. 6.2.4 in connection to the complexification of Bohmian mechanics.
Recent interest has been generated in studying the classical dynamics and properties
associated with complex Hamiltonians [36–41].

In brief, there are basically four routes (apart from their corresponding combina-
tions) to reach a complex dynamics [41]:

1. Whenever absorbing boundary conditions are assumed, a complex form of the
potential function is commonly applied, namely an optical potential (in analogy
to the complex refraction index from optics [24]). This was first considered, for
example, in problems involving nuclear scattering [42, 43]. In these cases, the
potential reads as V (q)= Vr (q) + iVi (q), where Vr and Vi are real functions
that rule, respectively, the system dynamics and its attenuation or the damping
effects undergone by it. Since Vi acts as an absorber, this kind of potentials are
typically employed in wave-packet propagation methods to avoid non-physical
reflections at the boundaries of the corresponding numerical grids [27].

2. In the semiclassical coherent-state propagator method [28, 29], a complex formu-
lation arises immediately when the change is usually considered within the
coherent-state formulation of quantum mechanics [44] and identified with a
change of classical variables. That is, the coherent state

|z〉 = e−|z|2/2ezâ† |0〉 (1.25)

is generated by the (quantum) Hamitonian Ĥ = p̂/2m + mω2q̂/2, with â† =
(mωq̂ + i p̂)/

√
2mω�, |0〉 being the ground state of the harmonic oscillator and

z = 1√
2mω�

(mωq + i p) . (1.26)

Taking into account this latter relation, the classical dynamics described in terms
of the two real variables (q, p) can be replaced by the complex variables (z, z∗),
which gives rise to a complex (classical) dynamics. Actually, the semiclassical
method leads to a dynamics where both q and p become complexified themselves.
This allows us to define two new complex variables,

http://dx.doi.org/10.1007/978-3-642-18092-7_6
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u = 1√
2mω�

(mωq + i p) , v = 1√
2mω�

(mωq − i p) , (1.27)

such that u �= v∗, because q and p are complex. These new variables satisfy the
(complex) Hamiltonian equations

u̇ = 1

i�

∂H

∂v
, v̇ = − 1

i�

∂H

∂u
. (1.28)

3. The relations described by (1.27) can be considered within another alternative
complexification scheme, where the variables q and p defining the classical Hamil-
tonian are directly made complex by analytical continuation. That is, one assumes
either a direct transformation to an expanded complex space,

q = q1 + iq2, p = p1 + i p2, (1.29)

or a sort of rotation in the complex phase space

q = q1 + i p2, p = p1 + iq2. (1.30)

In both cases, q and p are complex quantities, while q1, q2, p1 and p2 are real.
Usually the type of transformation (1.29) is considered in problems involving the
calculation of eigenstates of the Hamiltonian [30–35], while (1.30) is related to
(or arises from) formulations based on the use of coherent states [28, 29, 38–41],
as seen in (2).

4. Finally, a fourth type of complexifying a classical Hamiltonian is by just consid-
ering a complex parameter, such as the mass, angle, frequency or time (in the
latter case there is a Wick rotation).

Although one can directly tackle the study of the classical dynamics associated with
the complex Hamiltonians arising from these types of schemes, usually all of them
come from some requirement (either theoretical or numerical) in quantum mechanics.
Note that complex numbers are regarded as a signature proper of this theory (as well
as any other wave theory).

In order to illustrate how the classical equations of motion are determined when
dealing with complex variables, let us consider, for example, the change of vari-
able (1.29). Consider also that the complexified Hamiltonian can be expressed as
H(q, p) = H1(q1, p1, q2, p2) + i H2(q1, p1, q2, p2) and is such that, before such
an operation, Hamilton’s equations hold, i.e.,

q̇ = ∂H

∂p
, ṗ = −∂H

∂q
. (1.31)

Substituting H by its complex expression into (1.31) and then taking into account
∂/∂q = (∂/∂q1 − i∂/∂q2)/2 and ∂/∂p = (∂/∂p1 − i∂/∂p2)/2, one finds

q̇1 = 1

2

∂H1

∂p1
+ 1

2

∂H2

∂p2
, (1.32a)
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q̇2 = 1

2

∂H2

∂p1
− 1

2

∂H1

∂p2
, (1.32b)

ṗ1 = −1

2

∂H1

∂q1
+ 1

2

∂H2

∂q2
, (1.32c)

ṗ2 = −1

2

∂H2

∂q1
+ 1

2

∂H1

∂q2
. (1.32d)

If H is assumed to be an analytical function, it will then satisfy the Cauchy–Riemann
equations, which in compact form reads as

∂ f

∂z∗
= 0, (1.33)

where f is a complex analytical function depending on the also complex variable z.
Formally, this means that f will only depend on z, but not on its conjugate complex, z∗.
By applying (1.33) to our case, one finds the Cauchy–Riemann relations

∂H

∂q∗
= 0 ⇒ ∂H1

∂q1
= ∂H2

∂q2
,
∂H2

∂q1
= −∂H1

∂q2
, (1.34a)

∂H

∂p∗
= 0 ⇒ ∂H1

∂p1
= ∂H2

∂p2
,
∂H2

∂p1
= −∂H1

∂p2
. (1.34b)

After substitution of these relations into the equations of motion (1.32),

q̇1 = ∂H1

∂p1
, ṗ1 = −∂H1

∂q1
, (1.35a)

q̇2 = −∂H1

∂p2
, ṗ2 = ∂H1

∂q2
. (1.35b)

Notice here that, due to the analyticity of H, the time-evolution of these variables
can be obtained by only taking into account the real part of H. According to (1.35),
(q1, p1) and (q2, p2) form two pairs of conjugate variables with the formal structure
of their equations of motion following that of Hamilton’s equations (although the
sign is changed in the second pair). Similarly, if (1.30) was considered instead of
(1.29), then

q̇1 = ∂H1

∂p1
, ṗ1 = −∂H1

∂q1
, (1.36a)

q̇2 = ∂H1

∂p2
, ṗ2 = −∂H1

∂q2
, (1.36b)

with the Cauchy–Riemann equations being
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∂H1

∂q1
= ∂H2

∂p2
,
∂H2

∂q1
= −∂H1

∂p2
, (1.37a)

∂H1

∂p1
= ∂H2

∂q2
,
∂H2

∂p1
= −∂H1

∂q2
, (1.37b)

As can be noticed, the sign of the Hamiltonian relations for (q2, p2) is now the
appropriate one.

1.3 From Regular to Chaotic Dynamics

The concept of N-dimensional system is indistinctly used to refer either to a system
described by N degrees of freedom or to a set of N independent (interacting or
not) systems. In the first meaning one considers a single object described by many
internal degrees of freedom (e.g., a molecular system), while in the latter each degree
of freedom (or group of them) is related to an independent system (e.g., an interaction
among several atomic or molecular systems). In either case, many times one is only
interested in a subset of the N degrees of freedom, which are considered as the system
or subsystem of interest, and the remaining ones, which constitute the environment
or bath. This is, generally speaking, the starting point of the theory of open classical
and quantum systems (see Chaps. 2 and 5).

In this regard, consider a Hamiltonian function describing the dynamics of an
N-dimensional system,

H =
N∑

i=1

p2
i

2mi
+ V ({qi }Ni=1)+

K∑
j=1

V ( j)
ext ({qi }Ni=1), (1.38)

where V is the interaction potential coupling the different degrees of freedom (usually
called the internal potential) and Vext a certain external potential function acting on
them. The evolution of the N degrees of freedom is given, in general, by a set of
2N nonlinear coupled differential equations, as seen above. Splitting the degrees of
freedom into system and environment, one notes that the dynamical evolution of the
former undergoes fluctuations or deviations with respect to its isolated dynamics due
to the presence of the environment. Actually, under certain environmental conditions
the system dynamics acquires stochastic features (see Chaps. 2 and 5). This type
of stochasticity, which manifests as a seemingly erratic behavior in the individual
evolution of each degree of freedom (or subsystem), arises from the intrinsic chaotic
dynamics of a relatively complex associated Hamiltonian function [45]. However,
this is different from the stochasticity produced by external noise sources, where the
total dynamics is not conservative but dissipative (see Chaps. 2 and 5).

http://dx.doi.org/10.1007/978-3-642-18092-7_2
http://dx.doi.org/10.1007/978-3-642-18092-7_5
http://dx.doi.org/10.1007/978-3-642-18092-7_2
http://dx.doi.org/10.1007/978-3-642-18092-7_5
http://dx.doi.org/10.1007/978-3-642-18092-7_2
http://dx.doi.org/10.1007/978-3-642-18092-7_5
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1.3.1 Deterministic Chaos and Intrinsic Stochasticity

Chaotic dynamics are primarily characterized by a high sensitivity to initial condi-
tions. In general, they appear in dynamical systems described by nonlinear differential
equations. More specifically, according to the Poincaré–Bendixon theorem [46],
a system will display a chaotic dynamics if it is described by at least a set of
three autonomous (time-independent) coupled equations or two if the system is non-
autonomous (the third equation is supplied by the time-dependence). Hence, in the
case of an autonomous Hamiltonian system, it is necessary, at least, two degrees
of freedom with a nonseparable potential function. Usually, the sensitivity to initial
conditions manifests as an exponential growth of the distance between neighboring
trajectories, which is measured quantitatively by means of the so-called Lyapunov
exponent.

The phase space of a chaotic Hamiltonian system consists of regions of partial
integrability, characterized by the existence of tori and dynamical stability, with
interspersed regions of chaotic behavior [45]. This behavior has its origin in the
dynamical instability caused by the so-called homoclinic and heteroclinic inter-
sections of manifolds of unstable periodic motions [47–50]. The degree of chaos
(or irregularity) of a system can be varied by changing one parameter of the Hamil-
tonian, for example, some coefficient in the potential function or the total energy in the
case of a conservative system. This gives rise to regimes ranging from total integra-
bility (no dynamical instability is present) to total hyperbolicity (all periodic motions
are unstable). The latter implies ergodicity, a situation that can be characterized as
an intrinsic random behavior.2 The consequences of this intrinsic randomness are far
reaching. For example, in general, detailed descriptions of the system evolution will
not be practical and a statistical approach will be required. In other words, the evolu-
tion and relaxation towards equilibrium of certain average quantities will result more
(physically) meaningful than the individual behavior of a trajectory corresponding
to a given set of initial conditions. In this sense, chaos provides a natural justifica-
tion for the introduction of statistical ensembles. Furthermore, since chaos already
appears in two degrees of freedom Hamiltonian systems, statistical mechanics can
be justified even for small classical systems; the presence of many particles is not
a basic requirement for the foundation of statistical mechanics, in particular for the
existence of transport phenomena [51].

At a more quantitative level, system dynamics can be studied in terms of a set of
first-order differential equations with the form of flow equations [51],

ẋ = F(x), (1.39)

where x ≡ (q1, q2, . . . , qN , p1, p2, . . . , pN ) is a point representing the state of the
system on its phase space and F specifies the flow equations. Equivalently, the system
trajectories (in phase space) can be described by a mapping transformation,

2 The term intrinsic is used because this behavior arises from a set of deterministic equations of
motion with no need to introduce any external “environment” or fluctuations
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x = �t (x0), (1.40)

where �t is the evolution rule, called the flow, which tells us where the initial points
in phase space x0 have moved to at a time t. Usually, the mapping transformation �t

is a nonlinear function of the initial conditions and time. The evolution of a volume
of phase space is controlled by the Jacobian determinant of the transformation (1.40).
Formally solving (1.39) or (1.40), this determinant will read as

| det ∂x�
t | = e

∫ t
0 ∇·Fdτ , (1.41)

where ∂x stands for the partial derivative with respect to x. For Hamiltonian systems
the phase-space volume is preserved. Accordingly, ∇ · F = 0 and the Jacobian
(1.41) becomes equal to unity. Depending on how x is affected by the mapping
transformation �t , trajectories can be classified as:

• Stationary: if �t (x) = x for all t.
• Periodic: if �t (x) = �t+T (x) for a given minimum (finite) period T.
• Aperiodic: if �t (x) �= �τ (x) for all t �= τ.
Stationary points are usually equilibrium points of the potential function. Periodic
trajectories can be stable or unstable, which means that nearby aperiodic trajectories
will display quasiperiodic and chaotic behavior, respectively.

A key element in the analysis of the degree of irregularity of a complex dynamical
system is the structure of its phase space. This provides us with a qualitative view of
the main features given a particular value of the Hamiltonian parameters (typically
the total energy), such as equilibrium points and periodic motions. These elements
are signatures of the presence of stability regions and chaos or the domain of initial
conditions that will lead to chaotic and quasiperiodic behaviors as time evolves—for
other more quantitative analyses of the degree of chaos, the calculation of global
indicators, such as Lyapunov exponents or entropic measures, is required [51]. In the
particular case of two degree-of-freedom conservative systems, the study of the phase
space consists in analyzing the associated Poincaré surface of section (PSOS), which
is a projection (mapping) of the total phase space on a two-dimensional subspace.
More specifically, since the energy conserves, one of the variables is kept fixed
at a constant value, say the coordinate of the complementary subspace. Each time
the momentum of the complementary subspace satisfies a certain condition, the
trajectory is recorded and plotted in the subspace considered (i.e., the corresponding
coordinate and associated conjugate momentum). A full picture of the PSOS (which
is a “reduced” view of the higher-dimensional phase space) is then obtained by
sampling the whole phase space with different (properly chosen) initial conditions.
In terms of flows, the Poincaré map can be defined as
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x̄n+1 = �(x̄n), (1.42)

where x̄ represents the dynamical variables intrinsic to the PSOS. Hence periodic
motions are seen as fixed points of the Poincaré map x̄n = �(x̄n). Quasiperiodic
trajectories will give rise to regular islands and chaotic trajectories to randomly
distributed points on the PSOS.

The local stability of periodic motions is an important issue. To characterize the
stability of an orbit or trajectory, namely the reference trajectory, given by (1.40), the
evolution of trajectories starting at conditions which slightly deviate from it in small
amounts δx are studied. Substituting the new trajectory x′ = x + δx into (1.39) and
then expanding to linear order in δx yields

δẋ = ∂xF(x)δx. (1.43)

This is a system of linear equations with solutions

δxt = ∂x0�
t (x0)δx0 =M(x0, t)δx0, (1.44)

where M(x0, t) is the fundamental matrix, which obeys the evolution equation

Ṁ(x0, t) = ∂x0 F[�t (x0)]M(x0, t)δx0. (1.45)

Within this context, this matrix is known as the stability matrix. If the trajectory x is
periodic with period T, M(x0, T ) is also known as the monodromy matrix. The eigen-
values (λi ) and eigenvectors of this matrix determine the local behavior of neigh-
boring trajectories, since they describe the deformation of a neighborhood δx for a
finite time t. Thus, nearby trajectories separate exponentially along unstable direc-
tions (given by the eigenvectors associated with the λi , with |λi | > 1,) approach each
other along stable directions (|λi | < 1) or maintain their distance along marginal
directions (|λi | = 1). Due to the symplectic structure of Hamilton’s equations of
motion (see Sect. 1.2.1), in Hamiltonian systems real eigenvalues come in pairs
(λ, 1/λ), where one corresponds to the unstable direction and the other to the stable
one, while complex eigenvalues may appear in pairs (with |λ| = 1) or in quartets
(i.e., λ, 1/λ, λ∗, 1/λ∗, but only for systems with more than two degrees of freedom).
For example, in two-dimensional Hamiltonian systems, the Poincaré map reduces
the monodromy matrix to a 2× 2-matrix, which is characterized by a couple of
eigenvalues. If both are real, the orbit is unstable; if they are conjugate complex, the
orbit is stable (periodic).

The previous analysis refers to trajectory properties for a given value of the
Hamiltonian parameters. However, one is often interested in obtaining information
for a particular range of values of such parameters, which implies a parametric
analysis of evolution of the phase-space structure. The Kolmogorov–Arnold–Moser
(KAM) theorem [23, 47] gives a detailed account on the destruction of individual tori
in phase space under perturbations. However, in order to obtain a global picture of the
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phase-space structure at any relevant energy, a good strategy is to follow the evolu-
tion with energy of the principal periodic orbits.3 A suitable starting point consists in
defining the main families of periodic orbits according to Weinstein’s theorem [52],
which in the vicinity of an equilibrium point of the potential guarantees the existence
of as many periodic orbits as system degrees of freedom. There are several numerical
techniques to locate periodic orbits, even when they are highly unstable [53, 54] (for
example, those based on the shooting methods employed to solve ordinary differ-
ential equations with two-point boundary conditions [55]). Once a periodic orbit is
located, the parameter is slightly changed in order to determine the orbit for the new
value.

Let us express the eigenvalues of the monodromy matrix as λ= exp(αT ). Then,
given a two-dimensional Hamiltonian system and a periodic orbit of period 1
(i.e., T = 1) on the Poincaré map, the monodromy matrix becomes

M1 =
(

eα1 0
0 e−α1

)
. (1.46)

The stability of the orbit can be inferred directly from the trace of this matrix as
follows. If the eigenvalues are complex, Tr(M1) = 2 cos σ1(α1 = iσ1); if they are
real, Tr(M1) = 2 cosh α1. Therefore, the orbit will be:

• Stable: if |Tr(M1)| ≤ 2,
• Unstable: if |Tr(M1)| > 2.

This criterion is also valid if the periodic orbit is a fixed point of period n on the
Poincaré map, although replacing M1 by Mn . Then, making use of the property
Mn =Mn

1, for stable fixed points one finds that the trace after n iterations of the map
will be

Tr(Mn) = 2 cos(nσ1) = 2 cos
[
n(cos)−1[Tr(M1/2)]

]
. (1.47)

The same result holds for unstable orbits, but replacing the cosines by hyperbolic
cosines.

In order to understand now how periodic orbits appear, in general, notice that, as
can be shown [56], when the stability matrix has an eigenvalue λ = ±1, (1.45) has
a periodic solution. Thus, a periodic orbit of period n on the Poincaré map can only
appear (or disappear, if it already existed) whenever

Tr (Mn) = 2. (1.48)

This is called a bifurcation. Accordingly, from (1.47), fixed points of higher periods
n can be obtained from the period-1 fixed point whenever the relation

Tr (M1) = 2 cos(2πm/n) (1.49)

3 By “principal” orbits it is meant the simplest ones (i.e., those with smaller periods and the
simplest topology in general), since periodic orbits of higher periods usually originate from them.
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is satisfied, where m is an integer such that the cosine is modulo π. Unstable peri-
odic orbits do not bifurcate (i.e., do not give rise to new ones), but may change
their stability. In two-dimensional Hamiltonian systems there are only five types of
bifurcations [57–59]. For example, the period-doubling bifurcation (n= 2,m= 1,
Tr(M1)= − 2) changes the stability of the period-1 motion. In such a case, locating
the most important periodic orbits of period 1 and following the evolution of the
monodromy matrix with energy will allow us to obtain valuable information about
how the phase-space structure changes through this type of bifurcation.

In order to illustrate the theory here presented, in Fig. 1.1 several PSOSs are
displayed, showing the gradual transition from regular to chaotic dynamics as a
function of the total energy in the case of the well-known Hénon–Heyles Hamiltonian
system [60],

H = p2
x

2mx
+ p2

y

2my
+ 1

2
mxω

2
x x2 + 1

2
myω

2
x y2 + λ

(
x2 y − y3

3

)
. (1.50)

The PSOSs displayed on the left-hand side panels are obtained by recording the
(y, py) points of a set of trajectories each time they cross the plane x = 0 with px > 0;
similarly, on the right hand side, the PSOSs correspond to the crossings (x, px ) when
y = 0 and py > 0. At low energies, the different crosses with the PSOS give rise to
nearly circular distributions of points. If trajectories are periodic, they will cross the
corresponding PSOS a finite number of times and, therefore, only a finite number of
points associated with it will be observed. On the contrary, quasiperiodic trajectories
densely cover phase space regions and, therefore, give rise to close orbits in the
PSOS as t → ∞—although the closer they are to a periodic trajectory, the slower
they cover the phase space orbit. At higher energies, according to the KAM theorem,
the tori “break down” and orbits appear as sets of points scattered throughout the
PSOS, which enclose chains of stability region or islands. Actually, in the lower
panels (for energies close to the onset of dissociation), chains of islands can be seen.

Chaos plays a fundamental role in areas such as non-equilibrium statistical
mechanics, where it provides a connection between the irreversible phenomenolog-
ical macroscopic equations and the reversible Hamiltonian equations [61]. Moreover,
deterministic chaos can also induce transport mechanisms not considered in conven-
tional statistical mechanics. For example, the possibility of anomalous transport, i.e.,
mean square displacements (MSDs) growing faster or slower than linear in time, thus
implying a violation of Einstein’s diffusion law.

One of the relevant questions when talking about transport properties is that of the
decay of correlation functions with time. Also here dynamical instabilities rule the
intrinsic relaxation times of correlation functions, allowing one to obtain transport
coefficients from them. Time correlation functions are important from an experi-
mental viewpoint, since the spectra measured by means of the different spectro-
scopic techniques are related to the power spectra of well-defined dynamical variables
(see Appendix B). In general, spectral functions contain information on the system
frequencies. The corresponding spectrum can be discrete or continuum. Systems
characterized by a discrete spectrum of real frequencies present almost-periodic
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Fig. 1.1 Transition from order to chaos in the Hénon–Heiles system [60] as a function of the total
energy E. From top to bottom, E = 1/120, E = 1/24, E = 1/12, E = 1/8 and E = 1/6, the latter
being the onset of dissociation. The parameters considered are mx = my = ωx = ωy = λ = 1

oscillations, while continuum spectra indicate systematic decays [51]. When spec-
tral functions are allowed to be analytically continued towards complex frequencies,
one talks about resonances. The real part of these frequencies thus gives information
about oscillation periods and its imaginary part about relaxation rates. This relaxation
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process can be no longer exponential. More formally, these resonances are defined as
the poles of spectral functions and characterize transient behaviors in the time evolu-
tion. In nonlinear dynamics, these classical resonances are called Pollicott–Ruelle
resoances [51].

1.3.2 Random Walks and Lévy Flights

Chaotic dynamics induce some intrinsic randomness in the system. This randomness
is generated by the deterministic equation of motion, with no need to introduce any
external fluctuation. In this case, it makes sense to seek for a statistical description
of the dynamics. The study of the evolution of trajectory ensembles is then carried
out by means of the probability conservation principle, which takes the form of a
continuity equation.

If the phase space is sufficiently chaotic, one expects typical diffusive behaviors:
at very long times, chaotic trajectories may behave similarly to random walks due to
their residence times around stability islands.To illustrate this behavior, consider, for
example, the adsorbate diffusion on metal surfaces [62]. Here, adsorbates undergo
short jumps or flights between different cells of the substrate combined with short-
time intracell residence or localization. Average jump lengths between sites and
intracell mean waiting times are then finite. Thus, in agreement with Einstein’s
relation,

〈|x(t)− x(0)|2〉 ∼ Dt, (1.51)

this gives rise to MSDs that depend linearly with time. Physically, this means that
it is not necessary to describe in a very detailed way the deterministic evolution of
the adsorbates, but the effect induced by the surface on their positions (or velocities)
allows us to accounted for them as Gaussian stochastic variables (see Appendix B).
As a consequence, particles exhibit a Brownian motion.

Transport processes for which the associated MSDs violate Einstein’s relation
(1.51)—processes where particles do not undergo a Brownian motion—are generi-
cally called anomalous diffusion processes. In such cases, (1.51) is replaced by

〈|x(t)− x(0)|2〉 ∼ Dαtα. (1.52)

If α < 1, the diffusion process is slower than ordinary Brownian motion and the
corresponding regime is called subdiffusion. On the contrary, for α > 1, the diffusion
process is faster than a Brownian motion and the regime is known as enhanced
diffusion or superdiffusion. Since Richardson’s work on turbulence in 1926 [63],
anomalous diffusion and transport have been described in many different statistical
frameworks. Simple, non-Brownian random-walk models accounted well for the
first observations of anomalous diffusion. These models also provide an intuitive
physical picture of such processes: superdiffusion is originated by anomalously long
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jumps of a random walker, namely a Lévy walk, while subdiffusion is associated
with unusually long waiting times between successive walks. Subdiffusive processes
are usually modelled by a continuous-time random walk (CTRW) with a fractal
distribution of waiting times and, therefore, are also called “fractal time” processes.
Nevertheless, both anomalous regimes can be described within the CTRW formalism,
the existence of Lévy or stable probability distribution functions being central to the
explanation of general anomalous diffusion processes (see Appendix B). Additional
statistical frameworks employed to model anomalous transport include descriptions
based on the Langevin and the Fokker–Planck equations (see Sect. 2.3) via fractional
derivatives, generalized thermostatistics or combined approaches.

As it was stated above, chaotic dynamics can mimic the behavior displayed by
stochastic systems with no need to introduce any external noise source. It has been
widely shown that an unbound deterministic dynamical system fulfilling the ergodic
property can be described by a diffusion equation, thus exhibiting a normal diffusive
behavior. However, dynamical systems with mixed phase spaces (i.e., with coexis-
tence of regular and chaotic regions) are more interesting: inside a chaotic region
the ergodic property is expected to be approximately valid, although the existence
of stability islands may subtly change the statistical properties of the system. In
particular, the island structure can also induce anomalous transport under certain
circumstances. For example, it has been shown [62] that the existence of Lévy distri-
butions of jump lengths is crucial to explain anomalous diffusion in two-dimensional
Hamiltonian systems.

The concept of Lévy flight [64] is currently well established and widely used
in the physics of Lévy walks and Lévy statistics. It is used to indicate a random
walk in a continuous N-dimensional space displaying a stable or Lévy distribution of
jump lengths and a finite average time between jumps. More specifically, consider a
random walk described by the jump probability distribution function

P(x) = λ− 1

2λ

∞∑
j=0

λ− j
[
δ(x − b j )+ δ(x + b j )

]
, (1.53)

where b > λ > 1. According to (1.53), the probability to find a flight or jump of
length b j (backwards or forward) is λ− j , which decreases rapidly with the length of
the jump. That is, on average there will be λ jumps of length b j before observing
a jump of length b j+1, this giving rise to a self-similar or fractal pattern of walks
[65]. Due to the finiteness of the mean waiting times as well as the randomness
in their distribution, Lévy processes are Markovian in nature. A general feature of
Lévy distributions is that the corresponding MSD diverges, which arises from the
fact that long jumps are considered to be instantaneous. Obviously, in the diffusion of
a massive particle through space, the velocity cannot be infinite. These nonphysical
flights are then replaced by Lévy walks, where one takes into account the time needed
to complete each jump of the random walk. Consequently, even when the average
jump distance is infinite, the MSD after a time t will follow an algebraic dependence
on time. In Fig. 1.2, it is observed a Lévy walk typical of Na-atom diffusion on a
corrugated Cu(001) surface [62].

http://dx.doi.org/10.1007/978-3-642-18092-7_2
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Fig. 1.2 In surface diffusion processes, Brownian-like motions arisedue to thermal vibrations. In
the figure, trajectory pursued by a Na atom on a Cu(001) surface at T = 300 K.Due to the presence
of the surface, the motion is of the type of Lévy walk, although at times much larger than the inverse
of the surface friction constant, it becomes Brownian-like [62]. In the progressive enlargements,
the clustering structure typical of this type of motion is observed, which is due to the combination
of residence periods within a surface potential well and flights of arbitrary length between cells.
Here, the substrate friction constant is γ = 0.5 ps−1 and the evolution is up to t = 20,000 ps

1.4 Classical Particle Ensembles

1.4.1 Scattering Singularities

In many physical applications one is interested in the behavior of an ensemble or beam
of particles after a scattering process. A detailed analysis of scattering singularities
provides us with a very rich information of the phenomenon under study as well
as the nature of the interactions involved. Originally, due to its simplicity, this kind
of analysis was carried out for central force fields. The measurable quantities are
mainly derived from a fundamental function, the so-called scattering cross section.
This gives the scattering probability of an initial particle beam through a transversal
section of the beam or, in other words, the number of particles scattered into a solid
angle per unit time divided by the incident flux. Usually, this function depends on
the final dispersion or scattering angle and the impact parameter, which is defined
as the perpendicular distance between the center of force and the beam incidence
velocity. It is well-known from standard scattering theory [10] that the cross section
displays two types of singularities or zeros in its denominator, which give rise to the
rainbow and glory effects. The rainbow effect is related to the extrema of the classical
deflection function (defined as the final scattering angle versus impact parameter),
while the glory effect appears when forward or backward scattering takes place.
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The rainbow effect is closely related to caustics or accumulation of trajectories at
rainbow angles. In optics, the same behavior is found, but in terms of light rays. An
appropriate analysis of caustics should be carried out by appealing to the catastrophe
theory [66, 67]. Furthermore, orbiting singularities can also be observed if some
scattering particle is temporarily captured by the central force field.

If a periodic force field is considered (for example, the scattering of a particle
beam by a corrugated periodic surface), apart from the rainbow and glory effects, a
new singularity has been characterized: the so-called skipping singularity [67]. The
classical image of this effect is that of skipping stones on the surface of a river. In
order to make a stone to skip it is necessary to throw it with the correct incident
angle to reach certain impact points on the water surface. Interestingly enough, this
singularity has been shown to be responsible for the onset of chaos in this type of
multiple scattering since memory of initial conditions is completely lost. In particular,
when the rainbow angle reaches π/2 degrees (motion parallel to the surface), chaotic
dynamics start developing.

1.4.2 Liouvillian Dynamics

Classical statistical mechanics was originally formulated by Boltzmann, Maxwell
and Gibbs about 200 years ago. It deals with both equilibrium and non-equilibrium
systems of distinguishable interacting particles [68–70]. In this theory, where
motion is deterministic though unpredictable, natural or spontaneous fluctuations
are analyzed. These fluctuations are defined as any deviation undergone by a dynam-
ical variable with respect to its mean value and constitute a fingerprint of complexity
or, in other words, a signature of the lack of knowledge or ignorance on the corre-
sponding physical system. This implies that the evaluation of such fluctuations at
two different times will render information about the relaxation processes involved
and, therefore, leads us to a better understanding of the physical system.

In the limit of high temperature and low density, the behavior of any physical
system consisting of N microscopic particles (or, in general, degrees of freedom; see
discussion in Sect. 1.3) becomes classical. This can be expressed in a more formal
way as follows [68]. If Γ = �

√
2πβ/m is the particle mean thermal de Broglie

wavelength and n = N/V is the density of the N particles confined in a volume V,
the so-called degeneracy discriminant nΓ 3 turns out to be a very convenient para-
meter to classify the physical systems as classical or quantum. When nΓ 3 � 1 or
goes to zero, the system exhibits a classical behavior; when the degeneracy discrimi-
nant approaches unity, the system of indistinguishable particles exhibits quantum or
strongly degenerate behavior. Furthermore, the smaller the particle mass, the larger
the quantum effects.

Consider now a classical system containing N interacting particles. In statis-
tical mechanics, the positions of these particles are usually specified by 3N coordi-
nates, q1, . . . , q3N , with their corresponding conjugate momenta being p1, . . . , p3N .

According to Gibbs [71], one can construct an associated Euclidean space of 6N
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dimensions, the so-called phase space. The dynamical state of the system at a time t
is thus given by a point, namely the phase point, on the phase space. The trajectory
described by the phase point is ruled by 6N Hamilton equations of motion and can
be denoted generically as {q(t), p(t)} (see Sect. 1.2.2), being a mapping between the
initial state {q(0), p(0)} and the final state {q(t), p(t)}.

In general, there is a large number of phase points compatible with the information
available about the system (total energy, volume, etc.) and, according to Gibbs, the
set of all such points constitutes an ensemble of systems. Since the number of systems
in a given ensemble is very dense, it is possible to define a density of phase points or
distribution function, f (q, p, t).This function represents the fraction of phase points
contained within the volume dqdp at a given time t, and satisfies the normalization
condition

∫
f (q, p, t)dqdp = 1. (1.54)

By applying the time-derivative operator, d/dt , to (1.54),

d f

dt
= 0, (1.55)

which is an alternative way to enunciate the principle of conservation of phase density
for Hamiltonian systems. Taking into account Hamilton’s equations of motion, it is
straightforward to derive from this latter equation the most fundamental equation of
classical statistical mechanics, namely the Liouville equation,

∂ f

∂t
+ { f, H} = 0. (1.56)

This equation can also be written in the more standard form as

∂ f

∂t
= −iL f, (1.57)

where L f = i{H, f } is the Liouville operator, defined in terms of the Poisson
bracket (1.23). The form of the Liouville equation arises from the fact that for
Hamiltonian systems the phase-space volume conserves, i.e., ∇ · u = 0, where
u ≡ (q̇1, q̇2, · · · , q̇3N , ṗ1, ṗ2, · · · , ṗ3N ) is the generalized velocity in phase space.
In other words, the phase-space flow is incompressible. However, in general, the
conservation equation of phase points is described by a generalized continuity
equation,
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∂ f

∂t
+∇ · (u f ) = 0. (1.58)

This equation can be recast as a generalized Liouville equation,

∂ f

∂t
= L f, (1.59)

where L f ≡ −∇ · (u f ). For Hamiltonian systems, (1.59) reduces to the usual
operator that appears in (1.57) in terms of the Poisson bracket. Equation (1.55) is
equivalent to

f (q, p, t)dqdp = f (q0, p0, t0)dq0dp0, (1.60)

where q0 = q(t0) and p0 = p(t0). This is an alternative way to see that both
the density and the number of phase points in a given volume element remain the
same at any time and, therefore, the cloud of phase points behaves as an incom-
pressible fluid—the Jacobian between the final and initial points is unitary. Actually,
the point (q, p) can be considered as a function or mapping of the initial point (see
Sect. 1.3.1), i.e.,

q = q(q0, p0, t), p = p(q0, p0, t). (1.61)

Given a Hamiltonian, the corresponding trajectories can never cross in phase space
due to the uniqueness of the classical equations of motion, as seen in Sect. 1.2.1. This
classical non-crossing rule is comparable to the one arising in Bohmian mechanics
(see Sect. 6.2.1), although the latter is more restrictive in the sense that it directly
applies on the configuration space defined by q.

The Liouville equation can be seen as the infinitesimal generator of the group of
time translations induced in the phase space of the probability densities. In this way,
this equation is brought up into the form of a Schrödinger-like equation, equivalent
to the 6N Hamilton equations of motion associated with the N-body system. The
formal solution of this equation is, therefore,

f (q, p, t) = e−iL(t−t0) f (q0, p0, t0), (1.62)

where the operator e−iLt propagates f ahead a distance t − t0 in time. Since (1.57)
is an eigenvalue equation, the solution (1.62) can also be expressed [72–75] as

f (q, p, t) =
∑
λ′,α′

cλ′,α′ f λ
′,α′(q, p)e−iλ′t , (1.63)

http://dx.doi.org/10.1007/978-3-642-18092-7_6
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where λ′ is an eigenvalue, α′ its degeneracy, f λ
′,α′ the corresponding eigendistribu-

tion and

cλ′,α′ =
∫

f0(q0, p0)[ f λ′,α′(q0, p0)]∗dq0dp0 (1.64)

its coefficient, and f0(q0, p0) any classical initial distribution function. The formal
comparison between the solutions of the quantum and classical Liouville equations
may lead to think that the superposition principle also holds classically. Some super-
positions of eigendistributions for different eigenvalues of the Liouville operator
describing the classical harmonic oscillator can be found in [72]. In those cases
where one is only interested in the distribution of some of the degrees of freedom,
reduced distribution functions can be easily obtained by integrating over all those
phase coordinates which are not of interest. In this regard, the radial distribution
functions from the theory of liquids constitute a good example.

Once distribution functions and their respective equations of motion in phase
space are obtained, the next step consists of defining the ensemble average of a
dynamical variable A(q, p, t) to be

〈A(t)〉 =
∫

A(q, p, t) f (q, p, t)dqdp. (1.65)

Usually, the thermodynamic properties of a system are expressed as ensemble
averages of certain functions of the coordinates and momenta of the constituent
particles. At equilibrium, such averages become independent of time, i.e., 〈A(t)〉 =
〈A〉. The dynamical variables of interest are often functions of the coordinates and
momenta of just a few particles. This leads to the use of reduced distribution functions,
with the corresponding equations of motion commonly given in terms of a hierarchy
known as the Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy [76–80].

Equilibrium distribution functions are usually defined in terms of the macroscopic
parameters chosen to characterize the ensemble. For a microcanonical ensemble
(fixed number of particles, volume and total energy E0),

f0(q, p) = Cδ(H(q, p)− E0), (1.66)

where δ is the Dirac δ-function and C is a normalization constant. The constraint of
energy conservation allows us to define time-averages over the dynamical history of
the system. Microcanonical ensembles and time averages are identical if the system
is ergodic. This means that after a large lapse of time the system has visited the whole
phase region compatible with (1.66)—time-averages can be evaluated in molecular
dynamics simulations, for example. In a similar vein, canonical ensembles are char-
acterized by the same values of number of particles, volume and temperature. The
requirement of thermal equilibrium allows us to define energy averages as

〈E〉 = 1

Z

∫
He−βH dqdp, (1.67)
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where the classical, canonical partition function can be expressed as

Z = 1

N !h6N

∫
e−βH dqdp, (1.68)

with h being Planck’s constant and β = 1/kB T (kB is the Boltzmann constant); the
factor h6N in (1.68) ensures dimensionless quantities and goes over correctly to the
corresponding quantum statistical values.

To deal with nonequilibrium properties, in the 1950s Green and Kubo developed
the time-correlation function (TCF) formalism [81]. By definition, the classical TCF
of two dynamical variables A and B is

C(t) = 〈A(0)B(t)〉 =
∫

A(q, p, 0)B(q, p, t) f (q, p)dqdp, (1.69)

where f (q, p) is the equilibrium phase space distribution function (for vectorial
variables, a scalar product is used). If A = B, C(t) is the so-called autocorre-
lation function. The time Fourier transform of C(t) gives a generalized suscep-
tibility, where the thermal transport coefficients correspond to its zero–frequency
limit. TCFs may depend on space and, in general, describe the thermal fluctua-
tions occurring spontaneously in systems at equilibrium as well as the response of
a system to a weak, external perturbation (linear response theory). Unlike partition
functions, many TCFs can be measured directly [82]. Alternatively, C(t) can also be
defined in terms of fluctuations by replacing A and B by δA(0) = A(0) − 〈A〉 and
δB(t) = B(t)−〈B〉.Not far from equilibrium, relaxation processes are governed by
a principle first enunciated by Onsager in 1930, the so-called regression hypothesis.
This hypothesis states that the relaxation of macroscopic non-equilibrium distur-
bances is governed by the same laws as the regression of spontaneous microscopic
fluctuations in an equilibrium system. This is a consequence of the well-known
fluctuation–dissipation theorem that Callen and Welton proved in 1951. The linear
response theory is precisely based on this theorem.

The linear response theory describes the changes that a small external field induces
on the macroscopic properties of a system at equilibrium. Consider such an external
field is turned on at some initial time t0 and it is treated as a perturbation. The total
Hamiltonian describing this effect is expressed as a sum of two terms, H = H0+H1,
where the zeroth–order Hamiltonian, H0, describes the system equilibrium state and
the interaction Hamiltonian, H1, introduces a time-dependence. The phase–space
density can then be expressed as a power series expansion of the perturbation,

f = f0 + f1 + · · · . (1.70)

Substituting this expression into the Liouville equation and separating terms at
different orders, the first two orders render

∂ f0

∂t
+ { f0, H0} = 0, (1.71a)
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∂ f1

∂t
+ L f1 = −{ f0, H1}, (1.71b)

whenever the zeroth–order equation can be solved or f0 is known (typically f0 is
the canonical distribution function). Equation (1.71b) can be formally integrated in
terms of the zeroth–order Liouville operator, L0(·) = i{H0, ·}, to yield

f1(t) = e(t−t0)L0 f1(t0)−
∫ t

t0
e−(t−t ′)L0{ f0, H1(t

′)}dt ′, (1.72)

where it is usually assumed f1(t0) = 0. This equation can be considered a precursor
of the generalized master equation that appears in quantum mechanics (see Chap. 5).

The Boltzmann equation and one of its main direct consequences, namely the
so-called H-theorem (and irreversibility), are far from the scope of this monograph,
so they will not be treated here. However, the interested reader can consult some
of the references given throughout this Section, where these issues are discussed in
more detail.

1.4.3 Classical Statistical Mechanics as a Field Theory

As will be seen in Chap. 6, Bohmian mechanics [83–85] is based on the possibility
to reformulate standard quantum mechanics in terms of a quantum Hamilton–Jacobi
equation, which gives rise to a hydrodynamic description of quantum systems [86].
In classical mechanics there is also the possibility to proceed in the opposite way,
i.e., to describe the evolution of an ensemble of identical, non-interacting classical
particles with mass m under the influence of an external potential V by means of a
“classical” Schrödinger equation. Note that, given an external potential V and a total
energy E, there is an infinite number of associated classical trajectories—as many as
initial conditions (q0, p0) consistent with the condition H(q0, p0) = E . Therefore,
as seen in Sect. 1.3, a single trajectory is meaningless; valuable information about
the system can only be extracted when they are considered statistically, carrying out
an appropriate sampling over initial conditions.

Consider that such an ensemble is described by a certain distribution function
f (q, p, t) ≡ ρcl(q, p, t), while the individual evolution of each particle is ruled
by (1.12a). The individual and ensemble dynamics are therefore determined by
(1.15) and (1.58), respectively, where u = ∇S/m. It can be noticed that the system
dynamics is independent of the particular choice of the initial ensemble distrib-
ution, ρ0. However, the subsequent evolution of ρcl will depend on the system
(particle) dynamics through ∇S in (1.58). Within this formulation, classical statis-
tical mechanics can then be interpreted as a field theory. Actually, if u and ρcl are
assigned to the velocity field and density of an incompressible and non-rotational
fluid respectively, the formalism can be tackled from a hydrodynamic viewpoint. As
can be noticed, by applying the∇-operator to (1.15) and then using (1.12a), an Euler
equation is reached where the velocity field does not depend on the fluid density,

http://dx.doi.org/10.1007/978-3-642-18092-7_5
http://dx.doi.org/10.1007/978-3-642-18092-7_6
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∂u
∂t
+ (u · ∇)u = −∇V

m
. (1.73)

The classical Schrödinger equation can be now derived having in mind that the
problem just described can also be formulated considering an associated Lagrangian
density [85]. As is well known in theoretical mechanics when dealing with fields or
waves [8, 10], a Lagrangian L can be understood as the space integral of a certain
Lagrangian density L.The corresponding Euler–Lagrange equations, which are more
general than (1.3), are

∂L
∂ϕi
−

N∑
k=1

∂

∂τk

∂L
∂(∂ϕi/∂τk)

= 0, (1.74)

where ϕi represents a field variable depending on N independent parameters τk .

Consider that the τk , with k = 1, 2, 3, represent the three space coordinates,
(q1, q2, q3, )while τ4 = t. The only two fields of interest are ρcl and S. Observe that,
unlike the previous Lagrangian description, the solutions obtained from (1.74) are
fields associated with the motion of a set of classical particles, but not the trajectories
of these particles themselves. This is more apparent when the classical Lagrangian
density is considered [85],

L = −
[
∂S

∂t
+ (∇S)2

2m
+ V

]
ρcl = −d S

dt
ρcl +

[
(∇S)2

2m
− V

]
ρcl. (1.75)

Although the equations of motion for individual particles cannot be directly
derived from this Lagrangian density, the information to obtain them is already
implicitly given. However, note that if the fields are evaluated along a classical trajec-
tory, the right–hand side of either equality vanishes and L= 0. As seen in Sect. 1.2.2,
the term between brackets in the first equality corresponds to the Hamilton–Jacobi
equation (1.15). In the second equality, on the other hand, the particle Lagrangian
(1.2), with q̇ = ∇S/m, is being both added and substracted. This extremal condition
appears when applying the Euler–Lagrange equation (1.74) to (1.75) with respect
to the field S. If, on the contrary, it is applied with respect to ρcl, the continuity
equation (1.58) is obtained, which here describes a swarm of single, non-interacting
particles—each one evolving according to (1.15)—and can be recast as

∂ρcl

∂t
+ ∇ · Jcl = 0. (1.76)

Here, Jcl ≡ ρcl∇S is the current density associated with the flow of the density
distribution function and, therefore, it will provide information about the flow
of classical particles (distributed at any time according to ρcl). Obviously, since
the Hamilton–Jacobi formalism is being considered, ρcl is not described in terms
of the phase–space variables (q, p), but in terms of q and ∇S, this being the
reason why (1.76) does not depend directly on p, as the Liouville equation (1.58).
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In this regard, note that the evolution of trajectories does not depend on the evolu-
tion of the density distribution function, which might be inferred from the fact that
(1.75) is separable (factorizable) into two parts, one depending on S and the other
one on ρcl. Therefore, here ρcl only specifies the way how the initial conditions for
a set of individual trajectories are chosen (sampled). In this sense, the relationship
between ρcl and the trajectories is statistical rather than dynamical, differently from
what can be found in Bohmian mechanics (see Sect. 6.2.1).

Further proceeding within this description and expressing the information encoded
by S (dynamics) and ρcl (statistics) in a more compact form by defining a “classical”
wave function,

Ψcl = ρ1/2
cl ei S/�. (1.77)

If this form and its conjugate complex, Ψ ∗cl, are substituted into (1.75), the Lagrangian
density (1.75) becomes

L = i�

(
Ψ ∗cl

∂Ψcl

∂t
− Ψcl

∂Ψ ∗cl

∂t

)
+ �

2

8m

(∇Ψcl

Ψcl
− ∇Ψ

∗
cl

Ψ ∗cl

)2

|Ψcl|2 − V |Ψcl|2. (1.78)

Applying now variations to (1.78) with respect to Ψ ∗cl gives us the Euler–Lagrange
equation

i�
∂Ψcl

∂t
= − �

2

2m
∇2Ψcl + VΨcl + �

2

2m

∇2|Ψcl|
|Ψcl| Ψcl, (1.79)

which is the classical analogous of the Schrödinger equation [87–90]. Operating with
respect to Ψcl, the (classical) conjugate complex Schrödinger equation is similarly
obtained. Unlike its quantum counterpart, the solutions of (1.79) do not satisfy the
superposition principle, since the last term is nonlinear in Ψcl—actually, it has some
similarity to the quantum potential (see Sect. 6.2.1)—, which is necessary in order
to suppress quantum-like effects in classical mechanics.

1.4.4 Superposition of Classical Distribution Densities

Due to the nonlinearity of the classical Schrödinger equation, the superposition prin-
ciple does not hold for classical wave functions, but for density distribution functions,
since they satisfy the Liouville equation, which is linear (see Sect. 1.4.2). Nonethe-
less, in order to compare later on with quantum and Bohmian mechanics, consider
the problem of an ensemble of identical, non-interacting free classical particles with
mass m in one dimension. Moreover, it will also be assumed that their velocity is
the same (v) and constant. This is equivalent to say that their energy is the same,
since V = 0.Essentially, this ensemble is described by a microcanonical distribution
function. Taking this into account, (1.76) can be expressed in one dimension as

http://dx.doi.org/10.1007/978-3-642-18092-7_6
http://dx.doi.org/10.1007/978-3-642-18092-7_6
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∂ρcl

∂t
= −v ∂ρcl

∂x
. (1.80)

This is the Euler equation corresponding to an incompressible flow. In order to
solve (1.80), it is possible to switch from ρcl to its Fourier transform or spectral
decomposition,

ρcl(x, t) = 1√
2π

∫
ρ̃cl(α, t)e−iαx dα. (1.81)

Substituting (1.81) into (1.80) yields

∂ρ̃cl

∂t
= ivαρ̃cl, (1.82)

which has the solution

ρ̃cl(α, t) = ρ̃cl(α, 0)eiαvt . (1.83)

Introducing this value in the integrand of (1.81) and rearranging terms, it is found
that

ρcl(x, t) = ρcl(x − vt). (1.84)

Physically, this result means that the density distribution function describing an
incompressible, free fluid does not spread, but preserves its initial shape along time:
it is dispersionless. This is a direct (rather obvious) consequence of the fact that all
particles have the same energy.

With respect to the dynamics, taking advantage of the fact that v is a constant,
(1.15) can be straightforwardly integrated by parts. This yields

S(x, t) = S′(x)− Et. (1.85)

Proceeding similarly, but starting from (1.12a),

S(x, t) = S′′(t)+ mvx . (1.86)

Finally, putting together the results (1.85) and (1.86) gives rise to

S(x, t) = S0 + mv(x − vt/2) = S0 + p(x − pt/2m), (1.87)

where p = mv is the particle momentum. If this expression is substituted into (1.12a)
and then the corresponding equation is integrated,

x(t) = x0 + vt. (1.88)

A swarm of particles moving as (1.88), with randomly chosen initial positions
(according to ρcl(x, 0)) and the same velocity v, will evolve in time according to
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Fig. 1.3 Classical
trajectories distributed
according to (1.89).
Trajectories associated with
each density distribution
function are plotted with
different colors to
distinguish them. As can be
seen, they can pass through
the same point at the same
time because classical
dynamics does not exclude
this possibility in
configuration space, but only
in phase space

(1.84). If ρcl is given by two separate Gaussian distributions with width σ , since the
superposition principle holds for them,

ρcl(x, t) = ρcl,1e−(x−x̄1−vt)2/2σ 2 + ρcl,2e−(x−x̄2+vt)2/2σ 2
. (1.89)

Nevertheless, ensembles of trajectories associated with each distribution will evolve
independently and, therefore, there is no relevant effect among them (see Fig. 1.3),
contrary to what happens in Bohmian mechanics (see the corresponding applications
in Volume 2).

1.5 Classical Mechanics of Continuum Media

1.5.1 Coupled Motion

As will be seen in Chap. 2 (and also in Chap. 5) within the framework of the theory of
open systems, there are different ways to tackle the problem of the coupling between
a system and its surrounding. This coupling usually leads to very important effects on
the system, such as energy and coherence losses. For example, it is well known that
the action of an external friction on an oscillator gives rise to its gradual energy loss,
while the application of driving forces produces the opposite effect. Both friction
and driving forces are a simplified or coarse-grained way to describe a mean effect
of the surrounding on the system, where there is no feedback from the latter on
the former. However, it is interesting to understand the basic mechanisms behind

http://dx.doi.org/10.1007/978-3-642-18092-7_2
http://dx.doi.org/10.1007/978-3-642-18092-7_5
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this back and forth energy transfer between the two subsystems, namely the system
and its environment, for it allows us to better understand more general descriptions
coming from the theory of open systems.

Thus, consider a conservative system described by N degrees of freedom, each one
associated with a generalized coordinate qk(k = 1, 2, . . . , N ). The system (stable)
equilibrium configuration is specified by qk = qk0, q̇k = 0 and q̈k = 0. Since the
Lagrange equations are satisfied, it can be shown [22] that the kinetic energy is a
homogeneous quadratic function of the generalized velocities,

T = 1

2

∑
j,k

m jkq̇ j q̇k, (1.90)

and the potential energy can be expressed in terms of small displacements with
respect to the equilibrium position,

U = 1

2

∑
j,k

A jkq j qk, (1.91)

where U ({qk0}) = 0 (without loss of generality) and

A jk ≡ ∂2U

∂q j∂qk

⏐⏐⏐⏐
0
, (1.92)

with Ajk = Akj . Although the Ajk are just numbers, in general the mjk may depend
on the coordinates [22]. Hence, in order to express (1.90) at the same order of
approximation as (1.91), the mjk is expanded around the equilibrium positions, then
keeping only the zeroth-order, mjk(ql0) (from now on mjk will denote this value).
With this, the system of N coupled Euler–Lagrange equations to be solved reads as

∑
j

(Ajkq j + mjkq̈ j ) = 0, (1.93)

which, by means of solutions of the type q j (t) = a j ei(ωt−δ), can also be expressed
as

∑
j

(Ajk − ω2mjk)a j = 0. (1.94)

The determinant

|Ajk − ω2mjk | = 0 (1.95)

ensures the existence of a solution for the system (1.94). The associated equation is
called the characteristic or secular equation and its solutions, the eigenfrequencies
ωr, describe the oscillation normal modes. Any solution q j (t) can then be expressed
as a linear combination of the corresponding associated eigenvectors ar , i.e.,
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q j (t) =
∑

r

a jr ei(ωr t−δr ), (1.96)

where the eigenvectors satisfy the normalization relation,

∑
j,k

mkj a jr aks = δrs . (1.97)

Alternatively, the q j can also be described in terms of a set of new coordinates,
namely the normal modes, as

q j (t) =
∑

r

a jrηr (t), (1.98)

where each ηr (t) ≡ βr eiωr t oscillates at only one frequency (ωr ) and satisfies a
simpler equation,

η̈r + ω2
r ηr = 0. (1.99)

The normal modes introduce an important simplification of the system Hamiltonian,
which reads as

H =
∑
j,k

(
1

2
m jk p j pk + 1

2
A jkq j qk

)
=

∑
r

(
1

2
p̄2

r +
1

2
ω2

r η
2
r

)
, (1.100)

i.e., it is given in terms of N independent oscillators, with p j = q̇ j and p̄r = η̇r .

To illustrate this description, consider two oscillating particles of equal mass, m,
both subject to a restoring linear force with constant κ. These particles are also
coupled through another linear force with constant κ12. If x1 and x2 denote the
coordinates describing the position of these particles, the total kinetic and potential
energies are

T = 1

2
mẋ2

1 +
1

2
mẋ2

2 , (1.101a)

U = 1

2
κx2

1 +
1

2
κx2

2 +
1

2
κ12(x1 − x2)

2, (1.101b)

respectively. The corresponding secular equation is

⏐⏐⏐⏐ κ + κ12 − mω2 −κ12

−κ12 κ + κ12 − mω2

⏐⏐⏐⏐ = 0, (1.102)

with eigenfrequencies given by

ω− =
√
κ

m
, ω+ =

√
κ + 2κ12

m
. (1.103)
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The displacements x1 and x2 can be therefore expressed as a linear combination of
two motions, with frequencies ω− and ω+. The motion with frequency ω− is called
the symmetric mode, η− = x1 + x2, because both particles oscillate in the same
direction (in phase). On the other hand, ω+ gives rise to the so-called antisymmetric
mode, η+ = x1−x2, because of their oscillation in opposite directions (out of phase).
In terms of these modes, the total Hamiltonian reads as

H = p2
1

2m
+ 1

2
(κ + κ12)x

2
1 +

p2
2

2m
+ 1

2
(κ + κ12)x

2
2 − κ12x1x2

= p̄2+
2
+ 1

2
ω2+η2+ +

p̄2−
2
+ 1

2
ω2−η2−. (1.104)

That is, one passes from two coupled oscillators (H1 + H2 + V12) to two uncou-
pled effective oscillators (H+ + H−, ) although the phase coherence is preserved
implicitly: the coherence remains present in the collective (in phase or out of phase)
motion. This is precisely one of the very first steps considered in many analytical
approaches implemented to study open quantum systems [91–94] (see Chap. 5).

An interesting case is that of the weak coupling limit, κ12 � κ. In this case,
ω± ≈ ω0(1±ε), whereω0 = √(κ + κ12)/m is the natural frequency of either oscil-
lator when the other is held fixed and ε = κ12/2κ � 1 is a small perturbation intro-
duced by the coupling (the presence of the other oscillator). If x1(0) = x10, x2(0) = 0
and ẋ1(0) = ẋ2(0) = 0,

x1(t) = x10

2
(cosω+t + cosω−t) ≈ x10 cos εω0t cosω0t, (1.105a)

x2(t) = x10

2
(sinω+t + sinω−t) ≈ x10 sin εω0t sinω0t. (1.105b)

As it can be seen in Fig. 1.4, this means that, as time goes on, the amplitude of x1 starts
to decrease slowly with frequency εω0 due to an energy transfer to the second oscil-
lator. Consequently, the amplitude of the latter starts to increase progressively until,
at t =π/2εω0, all the energy has been transferred. In the case considered in the figure,
this means that x1= 0 and x2= x10. Then, the process reverts—energy is transferred
back again to the first oscillator. This energy transfer continues indefinitely due to the
conservation of the total energy, giving rise to the so-called phenomenon of beats.

1.5.2 Superposition of Classical Waves

The present understanding of (quantum) wave–packet propagation (and the dynam-
ical interference displayed when they “collide”) is pretty much based on how this
process is commonly thought in classical wave mechanics. It is therefore worth
revising the case of two (classical) pulses traveling with opposite velocities along a

http://dx.doi.org/10.1007/978-3-642-18092-7_5


1.5 Classical Mechanics of Continuum Media 37

Fig. 1.4 Beats produced in
the oscillations displayed by
two coupled, identical
particles, where ε = 1/17

homogeneous string.4 In this case, according to classical wave mechanics, given an
initial perturbation ξ(x, 0), its evolution at any subsequent time is determined by the
wave equation

∂2ξ

∂t2 = v2 ∂
2ξ

∂x2 , (1.106)

where the propagation (or group) velocity v depends on the physical properties of
the string. As is well-known, one of the general solutions to this equation is

ξ(x, t) = ξ(x − vt), (1.107)

a pulse propagating at a constant velocity v along the string and keeping its initial
shape ξ(x, 0) at any time. As in Sect. 1.4.4, this result can be easily derived by solving
(1.106) by means of the Fourier method. That is, expressing ξ(x, t) as

ξ(x, t) = 1√
2π

∫
ξ̃ (α, t)e−iαx dα (1.108)

and introducing this expression into (1.106), the latter becomes

4 This example has been chosen here for its simplicity and without loss of generality. Thus, the
results could also be readily extended to nonhomogeneous, three-dimensional media.
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∂2ξ̃

∂t2 = −(vα)2ξ̃ , (1.109)

whose solution is

ξ̃ (α, t) = ξ̃ (α, 0)eiαvt . (1.110)

Substituting this expression into (1.108) and taking into account that

ξ(x, 0) = 1√
2π

∫
ξ̃ (α, 0)e−iαx dx, (1.111)

(1.107) is finally reached,

ξ(x, t) = 1√
2π

∫
ξ̃ (α, 0)e−iα(x−vt)dα = ξ(x − vt). (1.112)

Consider that the perturbation or pulse has also initially a Gaussian shape with
width σ ,

ξ(x, 0) = ξ0e−x2/2σ 2
. (1.113)

According to (1.107), its propagation along the string is described by

ξ(x, t) = ξ0e−(x−vt)2/2σ 2
, (1.114)

i.e., the Gaussian propagates with positive velocity along the string. If instead of a
pulse there are two of them moving with identical velocities in modulus, but opposite
directions (see Fig. 1.5), because the superposition principle holds for (1.106), the
total perturbation felt by the string will be the sum of the two pulses,

ξ(x, t) = ξ1e−(x−x̄1−vt)2/2σ 2 + ξ2e−(x−x̄2+vt)2/2σ 2
, (1.115)

with x̄1 < 0 and x̄2 > 0. As seen in Fig. 1.5, after some time (panels (b) and (c)),
both pulses overlap, the total amplitude being the sum of both ξ1 and ξ2. However,
during their overlapping, the pulses proceed with their respective motions, but without
“interacting”—otherwise the superposition principle would not hold. After ξ reaches
its maximum amplitude (see panel (c)), according to the standard interpretation for
this process—commonly taught in classical mechanics courses—, each pulse goes
on unaffected with its initial velocity (see panel (d)). This interpretation follows from
a literal reading of (1.115): since the propagation of each pulse can be obtained from
the wave equation independently, they also keep moving with their respective initial
velocities all the way (during and beyond the overlapping). Now, if one considers a
view based on the flow of the energy associated with each pulse, their motions have to
be explained in a very different way: during the overlapping the energy flux reverts,
this leading to a reflection of the pulses (see panel (e)). No further details will be
exposed here about this interesting non-crossing property, but it will appear later on
in Chap. 6 as well as in Volume 2 in connection with both Bohmian mechanics and
standard electromagnetism. In the case of Bohmian mechanics, it will be related to
the probability density flow, while in electromagnetism it arises in a similar context
as here, i.e., linked to the (electromagnetic) energy flow.

http://dx.doi.org/10.1007/978-3-642-18092-7_6
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Fig. 1.5 From a to d,
snapshots illustrating the
time-evolution of a classical
wave or perturbation
consisting of two
counter-propagating
Gaussian pulses according to
the standard vision. e Final
outcome if one considers the
interpretation based on the
non-crossing of the energy
fluxes associated with each
pulse

(a)

(b)

(c)

(d)

(e)

1.5.3 The Hydrodynamic Approach

When dealing with the dynamics of many microscopic particles, both length and
time scales need to be simultaneously considered [70]. Typically, wavelengths are
compared with the mean free path, lm , and times with the mean collision time, τc.

Hence the dispersion plane (frequency versus wave number) can be divided into three
regions, which correspond to three different regimes:

• The hydrodynamics regime, where klm � 1 or ωτc � 1.
• The kinetic or molecular hydrodynamics regime [82], where klm ∼ 1 or ωτc ∼ 1.
• The free–particle regime, where klm � 1 or ωτc � 1.

In the first regime, the dynamical variables are described by macroscopic equa-
tions of motion, while in the second one microscopic equations of motion should be
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applied. In order to establish a bridge between both regimes it is necessary first to
specify the relationship between the two types of dynamical variables. To this end,
a “coarse-graining” procedure is carried out. For example, the difference between
the microscopic particle density and the (macroscopic) hydrodynamic local density
relies on the fact that the latter arises from averaging the first over both a volume and
a time interval. The volume is assumed to be macroscopically small, but still suffi-
ciently large to ensure that the relative fluctuation of the particle number is negligible;
the time interval is short on a macroscopic scale, but long compared to τc. Once this
smoothing step is complete, the Onsager regression hypothesis arises—which can
be justified on the basis of the linear response theory by means of the fluctuation–
dissipation theorem—, thus connecting linearly both regimes.

Hydrodynamics is a part of continuum mechanics dealing with the flow of fluids
[69, 70]. One of the most fundamental equations in hydrodynamics is the so-called
mass continuity equation, which expresses the conservation law for the fluid mass
in 3D and reads as

∂ρfl(r, t)

∂t
+ ∇ · Jfl(r, t) = 0, (1.116)

where ρfl is the mass density and

Jfl(r, t) = ρfl(r, t)v(r, t) (1.117)

is the mass current density, with v being the velocity of an element of fluid. The
continuity equation (1.116) can also be recast as

dρfl(r, t)

dt
+ ρfl(r, t)∇ · v(r, t) = 0, (1.118)

with

d

dt
≡ ∂

∂t
+ v · ∇ (1.119)

being the so-called hydrodynamic or Lagrangian derivative. This operator represents
the change in time of a given macroscopic function along the system flow or stream-
lines. Analogously to the mass density, a conservation law for the fluid momentum
can also be enunciated,

ρfl(r, t)
dv(r, t)

dt
+∇ · σ(r, t) = 0, (1.120)

where the σ function here represents the stress tensor or momentum current. This
law can be considered a Newton second law of continuum mechanics assuming that
no external force per unit mass is present. Furthermore, a conservation law for the
fluid energy can also be specified,

ρfl(r, t)
d E(r, t)

dt
+∇ ·Q(r, t) = 0, (1.121)
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where E(r, t) is the total energy per unit mass and Q the energy current or heat flux
vector.

In some special cases, the fundamental equations of continuum mechanics can be
reduced to some simple forms. For example, if Fick’s law of diffusion,

ρfl(r, t)v(r, t) = −D∇ρfl(r, t), (1.122)

where D is the diffusion constant, is substituted into (1.116),

∂ρfl(r, t)

∂t
= D∇2ρfl(r, t). (1.123)

This is the so-called diffusion equation. Usually, it is assumed that the heat flux vector
is given by Fourier’s law,

Q(r, t) = −λ∇T (r, t), (1.124)

with λ being the thermal conductivity and T the temperature. Then, substituting
(1.124) into (1.122) yields

ρfl(r, t)Cv
∂T (r, t)

∂t
= λ∇2T (r, t), (1.125)

where Cv is the heat capacity. This equation is the so-called heat conduction equation,
which has the same formal solution as the diffusion equation.

The simplest hydrodynamic equation is the Euler equation,

(
∂

∂t
+ v · ∇

)
v + ∇ p(r, t)

ρfl(r, t)
= 0, (1.126)

where p is the pressure. This equation describes the evolution of a non-viscous flow
and is obtained by setting the shear (η) and bulk (κ) viscosity coefficients equal to
zero. On the contrary, for a viscous flow the hydrodynamics is ruled by the Navier–
Stokes equation,

ρfl

(
∂

∂t
+ v · ∇

)
v = η∇2v +

(η
3
+ κ

)
∇(∇ · v)−∇ p(r, t). (1.127)

As it will be seen in Chap. 6, these two equations also play a fundamental role in
the understanding of the dynamics of quantum systems when they are described or
interpreted as quantum fluids [86].

http://dx.doi.org/10.1007/978-3-642-18092-7_6
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If fluctuations of the mass density and temperature are small, the main conserva-
tion laws can be linearized. Then, the decay of long wavelength fluctuations in terms
of the well-known collective modes of hydrodynamics can easily be deduced.
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Chapter 2
Dynamics of Open Classical Systems

2.1 Introduction

Traditionally, in classical mechanics conservative forces derivable from interaction
potentials—and therefore dependent on particle positions—have received much more
attention than dissipative or damping ones. The latter have been postulated to follow
a power law of the velocity, to be dependent on accelerations or even to be nonlocal in
space and time. However, the corresponding nonconservative systems, i.e., systems
that lose energy as motion takes place, are ubiquitous in Nature. Therefore, despite
of dealing with them is not exempt from difficulties, they are becoming more and
more attractive from a theoretical viewpoint in recent years. Nowadays classical
dissipation constitutes a very active field of research. For example, in a relatively
recent monograph, Razavy [1] surveys the very extensive literature on the subject,
paying special attention to the quantization of simple, solvable classical systems.

Open classical systems are usually defined as those where the system of interest
is surrounded by an environment. When the environment is constituted by many
degrees of freedom, characterized by a certain temperature (a measure of its internal
energy), it is called a bath (heat bath) or reservoir. In this sense, open systems can
also be defined as systems exchanging or dissipating energy with another one. The
dissipative forces leading to such energy transfers can be derived from a conservative
many-body problem. In this case, the full conservative system is typically split up
into two interacting parts or subsystems: the subsystem of interest or dissipating
system and the heat bath. Because the bath is usually an extended system with many
degrees of freedom, according to its definition, energy will not flow equally in both
directions. Eventually the system relaxes, losing its energy as time goes on. Hence,
dissipation is seen as an irreversible process. This fact is in apparent contradiction
with the time-symmetry exhibited by the equations of motion of classical mechanics.
To understand it, one has to consider that the concept of irreversibility is related to
the so-called Poincaré recurrence time, which is extremely large for an extended
system and, therefore, any process will appear to be irreversible. Of course, relaxation
processes may also display recurrences if energy flows in both directions, which
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usually happens when the environment has a few degrees of freedom. If bath noise
or fluctuations influence importantly the dynamics of the dissipative system, then
stochasticity will play a fundamental role. In this Chapter, only white noise will
be considered, for which the noise autocorrelation function is governed by a Dirac
δ-function. This is also called a Markovian regimen. Detailed discussions of the
action of colored noise on dynamical systems can be found in [2], for example.

In this context, space–time correlation functions (as defined in Sect. 1.4.2) play
a fundamental role since they are measurable quantities. These functions provide
a rather complete information about the decay of spontaneous thermal fluctua-
tions through thermodynamic averages of the product of two dynamical variables.
Different theoretical approaches have been developed for their calculation at finite
wavenumbers and frequencies. These approaches range from continuum descrip-
tion (very low wavenumbers and frequencies) in terms of hydrodynamic equations
to molecular dynamics simulations; in between, molecular hydrodynamic descrip-
tions are usually preferred. Irreversible time-dependent nonequilibrium properties are
very often analyzed within the so-called linear response theory, where systems are
supposed to be close to equilibrium. The cornerstone of this theory is the fluctuation–
dissipation theorem [3] and one of its important consequences: Onsager’s regression
hypothesis. As has already been mentioned in Chap. 1, this hypothesis states that
the relaxation of macroscopic nonequilibrium perturbations is also governed by the
regression law of spontaneous microscopic fluctuations in systems at equilibrium. A
direct evaluation of such correlation functions is a very difficult task when dealing
with many-body system. Thus, the most general formalism starts with the Liou-
ville equation for a dynamical variable—in general, depending on all the system
coordinates and momenta. Then, by means of the projection-operator technique, one
reaches a generalized Langevin equation for such a dynamical variable. This equation
is given in terms of a random force and its autocorrelation or memory function (some-
times it is also called delayed function). A similar equation can also be obtained for
its normalized space–time autocorrelation function without the random force term,
known as the equation of the memory function. Modelling memory functions is a very
standard procedure to obtain correlation functions. Nonetheless, there are other alter-
native, well-known approaches to calculate correlation functions, such as the kinetic
theory based on the linearization of the Boltzmann equation (in phase space), the so-
called mode-coupling theory, or the short-time (sum rules) and long-time behavior
(transport coefficients). A detailed presentation and discussion of these interesting
and important topics, which can be found in the more specialized literature [4–6],
are out of the scope of this monograph.

In dissipative dynamics, there are several oscillator models considered para-
digmatic, which can describe phenomenologically many elementary classical and
quantum processes. This is the case, for example, of the damped and driven harmonic
oscillator, typically considered in applications involving linear damping. This oscil-
lator obeys a differential equation of motion in configuration space given by

q̈ + γ q̇ + ω2
0q = F(t), (2.1)
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http://dx.doi.org/10.1007/978-3-642-18092-7_1


2.1 Introduction 49

where ω0 is the natural or harmonic frequency of the oscillator, γ is the friction
parameter and F(t) is the force acting on it. Analogously, there is the so-called
parametric driven harmonic oscillator, which arises originally from the study of
electric circuits. This oscillator is described by the differential equation

q̈ + γ(t)q̇ + ω2
0(t)q = 0, (2.2)

where γ and ω0 depend only on time and not on the state of the oscillator. In general,
the dependence on time is assumed to be periodic with the same period. Moreover, an
extra driving force, F(t), can also be added. By assuming Ohmic damping, or constant
friction, and substituting the position q by qe− γ t/2 into (2.2), the damping can be
formally removed. This yields the equation of motion of an undamped oscillator
evolving under the action of a modified potential,

q̈ +
[
ω2

0(t)− γ2/4
]

q = 0. (2.3)

For periodic forces or functions, Floquet’s theorem can be applied to this second-
order differential equation to find the corresponding periodic solutions (for certain
cases, some of them become unstable). Mathieu’s oscillator is a special case of
this oscillator, where ω2

0(t) = ω2
0 + ε cos(Ωt). This oscillator has been used to

interpret several experiments. For example, parametric resonances take place when
the external excitation frequency of a given parameter is equal to twice the oscillator
natural frequency.

Among the different nonlinear differential equations describing the motion of
a classical system, the so-called van der Pol and Duffing equations play a special
role. The van der Pol equation is a second order differential equation original from
self-sustained electric circuits that displays nonlinear damping. In one-dimension,
its general form reads as

ÿ + γ(y2 − α)ẏ + y = F(t), (2.4)

with γ and α real. In a similar vein, the Duffing equation describes the damping
motion of an oscillator subject to the influence of a nonharmonic force (Hooke’s law
is not obeyed). This equation, given by

ÿ + γ ẏ + αy + βy3 = A cos(ωt + φ), (2.5)

with γ, α, and β real, leads to chaotic dynamics. These important topics, nonlinear
damping [1] or chaotic dissipative motion [7] are also out of the scope of this mono-
graph.

The literature about the four oscillator models mentioned above and their applica-
tions is very extensive. The reader interested in a more detailed analysis is addressed
to any standard textbook dealing with linear and nonlinear dynamical systems. This
Chapter focuses on a general and simple introduction to dissipative and stochastic
dynamics in classical mechanics, with the purpose of supplying the means for a better
understanding of the dynamics of open quantum systems later on in Chap. 5.
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2.2 Dissipative Dynamics

Forces are usually assumed as conservative and derivable from interaction poten-
tials. As it was shown in Chap. 1, the canonical formulations of classical mechanics
for conservative systems are essentially the Lagrangian, Hamiltonian and Hamilton–
Jacobi formulations. These formalisms have been developed and extended to find
quantum analogues of conservative systems. However, for nonconservative systems
this extension is much more troublesome. One of the most important issues in analyt-
ical dynamics is the so-called inverse problem, i.e., the problem of determining the
Lagrangian and Hamiltonian functions from the equations of motion (see Sect. 1.2.1).
This problem has been widely studied due to the non-uniqueness implicit in those
formulations. The conditions for the existence of a Lagrangian function are called
the Helmholtz conditions, which provide a way to construct Lagrangians. However,
not all of them are acceptable because of the violation of some physical require-
ment. Moreover, when the number of degrees of freedom is equal or greater than
two, not always a Lagrangian can be found for a given classical system. The connec-
tion between invariance or symmetry properties and conserved quantities is given
by Nöther’s theorem [8]. This theorem allows to determine constants of motion, if
they exist, from the equations of motion in those cases where the problem cannot
be formulated in terms of the variational principle. This issue becomes critical when
dealing with dissipation, for dissipative systems cannot always be described by means
of a Lagrangian or a Hamiltonian. Hence finding an appropriate quantum description
for these systems is not exempt from difficulties and controversy.

Even when not all forces acting on a system can be derived from a potential
function, the Lagrange equations (1.3) can still be written [8] as

∂L

∂qi
− d

dt

∂L

∂q̇i
= Qi , i = 1, 2, . . . , N , (2.6)

where the Lagrangian L contains the potential of the conservative forces and Qi

represents the remaining forces. The simplest way to include dissipation within
the Lagrangian formulation is by adding the so-called dissipation function to the
Lagrange equations,

Qi = −∂F
∂q̇i

. (2.7)

This idea, due to Rayleigh, is based on considering that the gradient of Qi with
respect to the velocity just gives the dissipative force. In order to include nonlinear
damping forces, this Rayleigh function has been generalized by Lur’e [1]. Dissipative
dynamics can be considered by following different routes, which will be briefly
analyzed below.
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2.2.1 Effective Hamiltonians. The Caldirola–Kanai Model

One of the simpler ways to incorporate environment effects is by considering time-
dependent Lagrangian and/or Hamiltonian functions, thus avoiding to deal explicitly
with the environment degrees of freedom. This approach allows to preserve the
canonical formalism, which can be a good starting point to find out the quantum
analogue of the corresponding dissipative dynamics.

The paradigm of the dissipative dynamics is the damped harmonic oscillator
model, where the damping force is linear with the velocity. In a one-dimensional
configuration space, its equation of motion is (for m = 1)

q̈ + γ q̇ + ω2
0q = 0, (2.8)

where γ is the damping constant or friction. Physically, this equation describes a
classical dissipative system losing energy at a constant rate γ as time increases. The
Hamiltonian model associated with this simple system is the so-called Caldirola–
Kanai (CK) Hamiltonian [1, 9, 10],

HCK = p2

2m
e− γ t + V (q)eγ t , (2.9)

which was initially considered for a particle with time-dependent mass. In this Hamil-
tonian,

V (q) = 1

2
mω2

0q2 (2.10)

is the potential for a harmonic oscillator with frequency ω0 and mass m. As shown
below, this Hamiltonian has also been considered extensively for damping motion.
The corresponding Lagrangian is

LCK =
(

1

2
mq̇2 − 1

2
mω2

0q2
)

eγ t . (2.11)

As mentioned above, different Hamiltonians and Lagrangians from those given
respectively by (2.9) and (2.11) may also lead to the same equation of motion (2.8) in
configuration space. Actually, the correct equation of motion in phase space cannot
be obtained from the CK Hamiltonian.

From (2.9), the associated CK Hamilton–Jacobi equation now reads as

∂S

∂t
+ 1

2m

(
∂S

∂q

)2

e− γ t + 1

2
mω2

0q2eγ t = 0. (2.12)

Following the usual procedure of separation of variables (see Sect. 1.2.2), S can be
expressed as

http://dx.doi.org/10.1007/978-3-642-18092-7_1
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S(q; t) =W(q)− αt. (2.13)

After some algebraic manipulations, one obtains the solution of (2.8),

q(t) =
√

2α

mω2 e− γ t/2 sin[ω(t + β)], (2.14)

where β = ∂S/∂α and the oscillation frequency is

ω =
√
ω2

0 −
γ2

4
. (2.15)

In the case of a charged particle moving in an external electromagnetic field and
subject to a conservative force, the Lorentz force can be added to the equation of
motion. Alternatively, using the principle of minimal coupling [1], the canonical
momentum can be replaced by a momentum involving the vector potential—adding
to the corresponding Hamiltonian a term with the scalar potential. For conservative
systems, since H represents the total energy of the particle both formulations lead to
the same result. However, for dissipative systems, such as the problem of radiation
damping, the minimum coupling scenario does not apply, for it does not lead to the
correct equation of motion. On the other hand, the classical equation of motion for
a harmonically bound electron coupled to an electromagnetic field gives rise to the
classical theory of line widths. As mentioned above, other very well-known models
can also be found in the literature, such as the driven damped oscillator, Raleigh’s
oscillator or the variable mass oscillator.

The previous examples are all formulated in real space. However, the discussion
can be extended to a complex coordinate formulation. In this sense, the so-called
Dekker Hamiltonian [11] plays a special role. From the damped harmonic oscillator,
complex coordinates are introduced according to the change of variable

ξ = 1√
ω

[
p +

(
γ

2
− iω

)
q

]
. (2.16)

Then, given the Lagrangian

L = i

2

[
ξ∗ξ̇ − ξ ξ̇∗]−

(
ω − i γ

2

)
ξ∗ξ, (2.17)

the complex Hamiltonian that arises from it reads as

H = −
(

iω + γ

2

)
πξ, (2.18)

where π = ∂L/∂ξ̇ . In terms of the physical (real-valued) variables, this Hamiltonian
can also be expressed as
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H = 1

2
p2 + γ

2
(pq + qp)+ 1

2

(
ω2 + γ2

4

)
q2 − i

γ

2
. (2.19)

2.2.2 Lagrangians for Dissipative Systems
and Diffusion Equations

An alternative way to tackle the problem of the Lagrangian formulation for dissipative
systems is as follows. Consider the equation of motion (2.8) for the damped harmonic
oscillator. As mentioned above, in principle this equation cannot be derived from
any Lagrangian, since there is no stationary solution. In order to find out a suitable
Lagrangian, one can assume that the energy lost by the system goes into another
system, namely a mirror–image system, which absorbs it [12]. That is, if the energy
of the oscillator described by (2.8) is lost at a rate γ, it will be gained at the same rate
(with negative friction, − γ) by the mirror–image system, here denoted by q̄. This
implies a zero total energy balance and, more importantly, that stationary (extremal)
solutions for the larger system can be found. Thus, consider the Lagrangian describing
these coupled systems is

L = mq̇ ˙̄q − 1

2
mγ(q̄q̇ − ˙̄qq)− mω2

0qq̄, (2.20)

where m is the system mass. Applying variations [13] with respect to q̄ and q, one
obtains (2.8) as well as its homologous for q̄ ,

¨̄q − γ ˙̄q + ω2
0q̄ = 0. (2.21)

By further proceeding, it is possible to extract the Hamiltonian equations of motion.
Thus, applying the expression corresponding to the calculation of generalized
momenta from Lagrangian mechanics (see Chap. 1),

p = ∂L

∂q̇
= m ˙̄q − 1

2
mγ q̄ = me− γ t/2 d

dt

(
e− γ t/2q̄

)
, (2.22a)

p̄ = ∂L

∂ ˙̄q = mq̇ − 1

2
mγ q = me− γ t/2 d

dt

(
e− γ t/2q

)
. (2.22b)

Taking into account the functional form displayed by the last equalities in each
equation, a new set of generalized coordinates and momenta can be defined,

Q ≡ e− γ t/2q, P ≡ e− γ t/2 p, Q̄ ≡ e− γ t/2q̄, P̄ ≡ e− γ t/2 p̄, (2.23)

such that (2.22) become

http://dx.doi.org/10.1007/978-3-642-18092-7_1
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P = m ˙̄Q, P̄ = m Q̇. (2.24)

These relations somehow show the energetic balance in the full system described
by the Lagrangian (2.20), where the energy loss due to dissipation in the system
of interest is balanced with an energy increase, at the same rate, in its image. The
associated Hamiltonian is then given by

H = pq̇ + p̄ ˙̄q − L = p p̄

m
+ 1

2
γ(q̄ p̄ − qp)+ mω2qq̄, (2.25)

where ω is given by (2.15). With this change of variables, the Hamiltonian equations
of motion now read as

q̇ = p̄

m
− 1

2
γq, (2.26a)

˙̄p = −mω2q − 1

2
γ p̄, (2.26b)

˙̄q = p

m
+ 1

2
γq̄, (2.26c)

ṗ = −mω2q̄ + 1

2
γp. (2.26d)

In these equations, the intertwining between coordinates is very apparent—in the
pairs (q, p̄) and (q̄, p). This intertwining eventually leads to the system energy
dissipation and its absorption by the image system. This can also be noticed
from the eigenvalues of the matrix associated with the system of equations (2.26),
when the latter as expressed in symplectic notation. These eigenvalues are λ±− =
− γ /2±ω and λ±+ = γ /2±ω, where λ±− describes the system damping and λ±+ the
image-system energy absorption (at the same rate that the system losses it).

The mirror–image method thus allows to apply the variational techniques to dissi-
pative problems, since a Lagrangian density can be defined for them. In other words,
whenever one deals with dissipative problems with a gradual energy loss at a constant
rate and there is no knowledge on the bath dynamics (neither it is necessary), this
technique can be used to derive the corresponding equations of motion. This is the
case, for example, of the heat equation, which describes the time-evolution of temper-
ature (heat distribution) in a certain space region. In this case, one can construct a
Lagrangian density for this diffusion equation [12], which reads as

L = −1

2

(
ψ̄
∂ψ

∂t
− ψ ∂ψ̄

∂t

)
− D∇ψ · ∇ψ̄, (2.27)

where ψ represents the density of the diffusing heat (ψ̄ represents the mirror–image
of ψ) and D is the so-called diffusion constant or diffusion coefficient. Proceeding as
before, one finds the Euler–Lagrange equations
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D∇2ψ = ∂ψ

∂t
, (2.28a)

D∇2ψ̄ = −∂ψ̄
∂t
, (2.28b)

where (2.28a) is the heat equation and (2.28b) is an equation describing the absorption
of the heat flux leaving the system. Equation (2.28a) can also be regarded as the
diffusion equation with constant D for a swarm of identical, noninteracting particles.
In this case, ψ ≡ P is the probability density function describing the position
of one of such particles, which move pursuing random trajectories. This type of
motion is called Brownian motion. If all particles start at t0 = 0 and r0 = 0 (with
q ≡ r = (x, y, z)), the subsequent time-evolution of the ensemble will be described
(see Sect. 2.3.2) by

P(r, t) =
(

1

4πDt

)3/2

e−r2/4Dt . (2.29)

2.2.3 The Many-Body Problem

Dissipative forces can also be derivable from conservative many-body problems. In
general, any system of N interacting particles can be split up into two interacting
parts or subsystems, S1 and S2. This splitting is introduced on purpose to analyze the
time-evolution of one of these subsystems, say S1, while the other one (S2, in this
case) is regarded to play the role of an environment. If both subsystems have a few
degrees of freedom, the energy exchange goes in both directions, from S1 to S2 and
vice versa, as seen in Sect. 1.5.1. However, if one of them has a very large number
of degrees of freedom, say S2, and its dynamics becomes rather complex, the energy
will only flow in one direction, from S1 to S2. The dynamics of S1 then becomes
dissipative, and the corresponding force is determined by the nature of the coupling
with the extended system S2. For example, well-known models exhibiting this type
of dynamics are [1]:

• The Schrödinger chain, formed by an infinite number of mass points coupled by
elastic springs. Here the decay law of any of its constituents is non-exponential.

• The Rubin model, where a massive particle is coupled to a semi-infinite chain of
oscillators.

• The dynamics of a nonuniform chain (different masses and elastic spring
couplings), where the decay law for a given particle is exponential.

A special case arises when a collection of harmonic oscillators is analyzed, all
of them linearly coupled to a given system, e.g., a particle or a harmonic oscillator.
For example, the van Kampen model describes an electron harmonically coupled to
an electromagnetic field expressed in terms of confined waves in a large but finite
sphere. Another example is Sollfrey’s model, which describes an oscillator coupled
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to a string of finite or infinite length. Among these models, the most celebrated one
is the Ullersma Hamiltonian model [14–17],

H = p2

2M
+ V (q)+

N∑
i=1

(
p2

i

2mi
+ 1

2
miω

2
i q2

i + κi qi q

)
, (2.30)

where κi stands for the system-environment coupling coefficients. Usually, it is
assumed that the masses of all oscillators are equal. At t = 0, all of them are at
rest at their equilibrium positions. The formal solution for each qi is

qi (t) = − κi

ωi

∫ t

0
sin[ωi (t − t ′)]q(t ′)dt ′, (2.31)

while the equation of motion for q reads as

q̈ + ∂V

∂q
+

∫ t

0
K (t − t ′)q(t ′)dt ′ = 0. (2.32)

In the latter equation, the kernel K (t − t ′) has the general form

K (t − t ′) =
N∑

i=1

κ2
i

ωi
sin[ωi (t − t ′)], (2.33)

although other different forms can also be envisaged, for example, K (t − t ′) =
2γ δ(t − t ′), which is widely used. Thus, by extending to infinity the upper limit of
the integral in (2.32) and assuming that V(q) is harmonic, this equation reduces to
the damped harmonic oscillator equation of motion (2.8). In this particular case, the
Hamiltonian (2.30) becomes a quadratic function of the coordinates and momenta.
As is well known, this type of Hamiltonian can be diagonalized exactly by means of
a canonical transformation. The resulting Hamiltonian is also harmonic and consists
of N + 1 independent oscillators with renormalized frequencies or normal mode
frequencies [1].

Another interesting case arises when V(q) describes a potential barrier, so that only
tunneling allows a particle to pass through. In classical mechanics the momentum
becomes imaginary and therefore an imaginary time formulation for the particle
motion can be used. The corresponding Lagrangian (Euclidean Lagrangian) is
expressed as

L = q̇2

2
+ V (q)+

N∑
j=1

(
q̇2

j

2
+ 1

2
ω2

j q
2
j + κ j q j q

)
, (2.34)

where the time derivatives are taken with respect to the imaginary time τ = it (Wick
rotation). Now, the classical dynamics occurs in the inverted potential, with the
equation of motion for q being
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q̈ − ∂V

∂q
+

∫ +∞
−∞

K (τ − τ ′)q(τ ′)dτ ′ = 0, (2.35)

where the explicit form of the kernel is

K (τ − τ ′) = −
N∑

j=1

κ2
j

2ω j
e−ω j |τ−τ ′|. (2.36)

2.3 Stochastic Dynamics

As mentioned at the beginning of Sect. 1.3, when dealing with many-body systems
described by Hamiltonian functions like (1.38), dynamics may exhibit stochastic
features. This is a “coarse-grained” effect arising when one only focuses on the
dynamics of the system of interest, neglecting details about the environment
dynamics. At present there are high performance numerical techniques (e.g., the
so-called Molecular Dynamics methods [18]), which carry out sophisticated simula-
tions of many degree-of-freedom classical systems. Relatively large sets of Hamil-
tonian or Newtonian coupled differential equations can be solved provided there
is a complete information of the initial conditions for all the degrees of freedom
involved. To some extent, these simulations mimic the own experiment (of course, at
the level of accuracy of the model employed). Indeed, in those cases where no exper-
iment is available, they play the role of an experiment itself. This is a very important
advantage, although there are also some disadvantages. For example, among the
main disadvantages, one finds that in these approaches some physical insight is
unavoidably lost, for statistical methods have to be eventually considered in order
to understand the underlying physics—the study of isolated trajectories in systems
described by a large number of degrees of freedom is useless. This flaw can be
surmounted through the use of some theoretical model devised within the frame-
work of the theory of open classical systems. From this viewpoint, N-body problems
can be replaced by simpler single-body ones, where an effective (phenomenolog-
ical) interaction between the system of interest and the environment is assumed. In
general, the effective interaction is introduced by means of a noise or fluctuating
force coming from the bath and whose intensity is accounted for by a friction coef-
ficient, and typically linear with temperature. The case where the friction coefficient
is constant in space and time, as in (2.8), is called Ohmic friction. The drastic reduc-
tion of dimensionality of the original problem arising when stochastic models are
assumed is very advantageous computationally, since the specific dynamics of the
environment—with dimensions typically much larger than those associated with the
subsystem of interest—is neglected. Furthermore, more importantly, this allows us
to apply analytical statistical treatments to study the subsystem of interest, so that its
dissipation mechanisms can be better characterized and understood.

The stochastization or randomization of a general physical process thus consists of
carrying out a sort of coarse-graining in space and time [3]. The degree of “crudeness”
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required by a stochastization is directly related to the level of accuracy required by
the spatial and temporal measurements of dynamical variables. A stochastic physical
process is called Markovian if its time evolution is determined by the present and
not its past (see Appendix B), losing very quickly any memory of its past. As a
consequence, Markovian laws of motion are first-order differential equations with
respect to time. Delayed effects and nonlocal properties are therefore not taken into
account. The paradigm of stochastic processes is the Brownian motion, i.e., the
seemingly random movement of particles suspended in a fluid, but also, in a more
modern conception, the mathematical model used to describe similar random motions
in other systems [19–21]. The random-walk problem is often considered as a model
for such a motion. Brownian motion is not only Markovian, but also Gaussian,
since the central limit theorem applies for sufficiently long times, at least longer
than the system correlation time, so that the system has lost memory of its initial
conditions. If the number of particles is not too large and the particularities of the
interactions among them can be ignored, Brownian particles are governed by the
standard diffusion equation. The mean time between collisions of Brownian particles
and their surrounding is of the same order of magnitude or even slightly shorter than
the average period of the environment fluctuating force.

There are mainly three ways to introduce stochasticity. First, phenomenologi-
cally, describing Brownian-like motions by means of the standard Langevin equation,
where the system-environment interaction is governed by two parameters: temper-
ature and friction [6, 22]. Second, starting from the Liouville equation, which is
satisfied by any dynamical variable. Within this approach, Fokker–Planck-type equa-
tions can be easily reached. Actually, projection-operator techniques are very often
used to obtain a generalized Langevin equation [4], where its kernel or memory func-
tion also fulfills a given integro-differential equation written in terms of its corre-
sponding time-correlation function [5]. And third, as shown in Sect. 1.2.2, following
the Ullersma model [14–17] or the so-called Caldeira–Leggett Hamiltonian model
[23], the equations of motion can be expressed in terms of a generalized Langevin
equation whenever the oscillators are not assumed to be at rest at t0 = 0.The trajecto-
ries issued from solving such equations are called (classical) stochastic trajectories.
Notice that this stochasticity is due to an external noise source, quite different from
the inherent or intrinsic stochasticity related to chaotic dynamics (see Sect. 1.3).

A central issue which is not going to be treated here is the role played by external
noise in nonequilibrium phase transitions, also called noise-induced transitions [24].

2.3.1 Brownian Motion and the Langevin Equation

Stochastic dynamics deals with random or stochastic variables and stochastic
processes (see Appendix B), Brownian motion being a paradigm of this type of
dynamics. This singular motion was formerly described by Ingen-Housz [25] in 1785
as an irregular motion of coal dust on a surface of alcohol—similar conclusions were
drawn by Bywater [26] in 1819—and later on by Brown [27, 28] in 1827 when
studying pollen particles suspended on water. Some of the mathematics behind the
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Brownian motion are already incipient in Thiele’s works on the least-square method
in the 1880s [29]. However, it was not until 1880 when the first stochastic model to
describe the stock option market as a Brownian motion was proposed by Bachelier
[30]. Then, shortly after, independent physical solutions to the problem of Brownian
motion were given by Einstein [31, 32], in 1905, and Smoluchowski [33], in 1906,
who used this type of motion as an indirect proof of the existence of atoms and
molecules. According to Einstein, the MSD of a Brownian particle is proportional
to the first power of time—a result reminiscent of the random-walk problem—, this
being the main feature defining Brownian motion.

For simplicity, a one-dimensional description of Brownian motion is going to
be considered, since the essential physics is well contained in this simple case.
This motion, for example, takes place when a particle is adsorbed on a flat surface.
Due to the fact the particle–surface interaction is zero, no direction is privileged.
Furthermore, this dynamics will be the starting point to discuss simple physical
processes in terms of quantum stochastic trajectories in Volume 2. The equation of
motion describing a Brownian particle of mass m embedded in a fluid, proposed by
Langevin [34] in 1908, is given by

mv̇ = −mγv + m RG(t), (2.37)

or, in the form of a stochastic differential equation, as

mdv = −mγvdt + mdW (t), (2.38)

where dW (t) = RG(t)dt is a Wiener process [35, 36] (see Appendix B). The right-
hand side of this equation can be split up into two contributions:

1. A deterministic part, characterized by the friction force −mγv, with γ being the
friction coefficient depending on the fluid viscosity.

2. A random part, governed by the random force m RG(t) or Gaussian white noise.

Since the random force is described by a Wiener process, it satisfies the two conditions
of a typical Gaussian white noise:

1. The stochastic process RG(t) is Gaussian with zero mean, i.e.,

〈RG(t)〉 = 0.

2. The force–force time-correlation function is infinitely short, i.e.,

m2〈RG(0)RG(τ )〉 = Aδ(τ ),

with A being a constant giving the strength of the coupling between particle and
environment and determined by the energy equipartition theorem.



60 2 Dynamics of Open Classical Systems

Fig. 2.1 As an example of
Brownian motion driven by a
Gaussian white noise, as in
Fig. 1.2, the classical
stochastic trajectory pursued
by a Na atom is also
displayed here at T = 300
K, though on a flat surface
(V = 0). The friction
constant is γ = 0.5 ps−1 and
the evolution is up to
t = 20,000 ps

The validity of this model relies on the fact that the Brownian particle is much
heavier than the environmental ones. This implies that the kicks received by the
particle, although relatively weak, they are very effective when considered in a very
large number—the central limit theorem holds and, therefore, the noise becomes
Gaussian. Actually, these kicks can be seen as coming from thermal fluctuations
of the surroundings. Remember that the detailed time-evolution of the environment
degrees of freedom is not taken into account because their correlations decay faster
than those of the particle (Markovian approximation), as expressed by the property 2.
Thus, they are accounted for by assuming the presence of fluctuations that perturb the
free evolution of the particle. In Fig. 2.1 one classical stochastic trajectory driven by
a Gaussian white noise is plotted, which simulates a realization of a two-dimensional
Brownian motion. In order to obtain information about the diffusion process, a swarm
of these trajectories (i.e., a sampling over many Brownian realizations) should be
considered.

The relationship between the friction in the Langevin equation and the fluctua-
tions of the random force is given by the fluctuation–dissipation theorem [3], which
reads as

γ(ω) = m

2kB T

∫ ∞
−∞
〈δRG(0) δRG(τ )〉 e−iωτdτ, (2.39)

where

δRG(t) ≡ RG(t)− 〈RG(t)〉 (2.40)

is the fluctuation due to the random noise function RG(t) and kB is the Boltzmann
constant. Whenever properties 1 and 2 for a Gaussian white noise apply, the friction
coefficient becomes independent of the frequency

http://dx.doi.org/10.1007/978-3-642-18092-7_1
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γ(ω) = A

2mkB T
, (2.41)

with T being the heat bath temperature. Thus, the frequency spectrum of the friction
force is flat or white, in the sense that all frequencies contribute equally to it, in
analogy to white light, i.e.,

γ(ω) ≡ γ . (2.42)

The strength of the coupling between the Brownian particle and the environment
will be

A = 2mγkB T, (2.43)

and the Gaussian white noise correlation function

GG(τ ) ≡ 〈δRG(0) δRG(τ )〉 = 2γkB T

m
δ(τ ). (2.44)

Physically, this dynamics implies that, at thermal equilibrium, the equipartition
theorem holds.

In general, there exists an interaction between the particle and the surface (for
example, if the surface is corrugated). Thus, (2.37) can be rewritten as

q̈(t) = − γ q̇(t ′)dt ′ + F(q(t))+ δRG(t), (2.45)

where q represents the particle position and F = −∇V is the deterministic force per
mass unit derived from the interaction or external potential, V. The solution of this
equation can be readily obtained by formal integration, to yield

v(t)= v0e−γt +
∫ t

0
e−γ(t−t ′)F(x(t ′))dt ′ +

∫ t

0
e−γ(t−t ′)δRG(t

′)dt ′, (2.46a)

q(t)= q0 + v0

γ

(
1− e−γt)+ 1

γ

∫ t

0

[
1− e− γ(t−t ′)

]
F(q(t ′))dt ′

+ 1
γ

∫ t

0

[
1− e−γ(t−t ′)

]
δRG(t

′)dt ′, (2.46b)

where v0 = v(0) and q0 = q(0). As can be seen, for δRG = 0, (2.46) are the formal
solutions of purely deterministic equations of motion. Therefore, without loss of
generality, they can be expressed as

v(t) = vd(t)+ vs(t), (2.47a)

q(t) = qd(t)+ qs(t), (2.47b)

where d refers to the deterministic terms of the solutions and s to those associated
with the stochastic force. Nevertheless, note that when δRG(t) 
= 0 the deterministic
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part will also present some stochastic features due to the evaluation of F(q) along
the trajectory q(t), which is a stochastic process.

Taking advantage of properties 1 and 2 for a Gaussian white noise, the main
average quantities can be written as (see Appendix B)

〈v(t)〉 = v̄d(t), (2.48a)

〈v2(t)〉 = v̄2
d(t)+ 〈v2

s (t)〉, (2.48b)

〈q(t)〉 = q̄d(t), (2.48c)

〈q2(t)〉 = q̄2
d (t)+ 〈q2

s (t)〉, (2.48d)

where the “barred” magnitudes indicate the respective averages of the deterministic
part of the solution and

〈v2
s (t)〉 = e−2 γ t

∫ t

0
dt ′e2 γ t ′

∫ t−t ′

−t ′
eγ τGG(τ ) dτ, (2.49a)

〈q2
s (t)〉 =

1
γ2

∫ t

0
dt ′

[
1− e−γ(t−t ′)

] ∫ t−t ′

−t ′

[
1− e−γ(t−t ′−τ)] GG(τ ) dτ. (2.49b)

The final form of these expressions thus reads as

〈v2
s (t)〉 =

1

α2

(
1− e−2 γ t

)
, (2.50a)

〈q2
s (t)〉 =

1
γ2α2

[
2γt + 1− (

2− e− γ t)2
]
, (2.50b)

with α = √m/kB T . For example, if V = 0, the system is initially thermalized (i.e.,
it follows a Maxwell–Boltzmann velocity distribution) and has a uniform probability
distribution in positions around q = 0, then v̄0 = 0, v̄2

0 = kB T/m, and q̄0 = 0. This
leads to

〈v(t)〉 = 0, (2.51a)

〈v2(t)〉 = kB T

m
, (2.51b)

〈q(t)〉 = 0, (2.51c)

〈q2(t)〉 = q̄2
0 +

kB T

mγ2

[
2γt + 1− (

2− e− γ t)2
]
, (2.51d)

as it was found by Wiener in his description of Brownian motion [35].
From (2.51), two dynamical regimes can be clearly distinguished depending on

the value of γt. For γt � 1, collision events are rare and the particle shows an almost
free motion with relatively long mean free paths. This is the ballistic or free-diffusion
regime, characterized by the MSD
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〈q2(t)〉 ∼ kB T

m
t2. (2.52)

On the other hand, for γt  1, there is no free diffusion, since the effects of the
stochastic force (collisions) are dominant. This is the diffusive regime, where the
MSD is linear with time,

〈q2(t)〉 ∼ 2kB T

mγ
t = 2Dt. (2.53)

This is the so-called Einstein’s law for diffusion. As can be inferred from (2.53),
by lowering the friction γ acting on the particle, a faster diffusion takes place
(the diffusion coefficient D increases). Transport processes characterized by a MSD
violating Einstein’s law are generically called anomalous transport processes [37]
(see Sect. 1.3.2).

2.3.2 Brownian Motion and the Liouville Equation

As mentioned above, one can also seek for a statistical description of the dynamics and
study the evolution of (statistical) ensembles of stochastic trajectories. In Sect. 1.4.1,
it was already briefly discussed how classical dynamics generate probability densi-
ties in phase space. This settled down the basis to define statistical ensembles. The
time-evolution of these probability densities is governed by the Liouville equation.
Similarly, the time-evolution of any general dynamical variable A, which is a function
of the phase–space point at any time, is given by an analogous equation,

∂A

∂t
= −LA. (2.54)

In order to describe experimental macroscopic quantities, a coarse graining in time
or time-average of the dynamical variable of interest should be carried out. As seen
in Sect. 1.3.1, if the equations of motion are fully deterministic (as it happens, for
example, in Molecular Dynamics simulations), the cause leading to make time-
averages equivalent to phase–space averages (ergodic hypothesis) and then justifying
the calculation of thermodynamic properties, is the intrinsic dynamical instability or
chaos. However, when talking about transport properties, the key element is the decay
of correlation functions with time, where the Green–Kubo relations constitutes the
ordinary link between Liouvillian dynamics and transport coefficients. Although
ergodicity is an important condition, it is not very useful, since one cannot define a
timescale based only on this property. Again, the intrinsic relaxation times of corre-
lation functions are ruled by the dynamical instability, which also allows to obtain
transport coefficients from it. Time-correlation functions are also of experimental
relevance, since the spectra measured by various spectroscopic techniques are the
power spectra of well-defined dynamical variables. As mentioned in Chap. 1, reso-
nant behavior can be extracted from the complex frequency spectrum of such spectral
functions.

http://dx.doi.org/10.1007/978-3-642-18092-7_1
http://dx.doi.org/10.1007/978-3-642-18092-7_1
http://dx.doi.org/10.1007/978-3-642-18092-7_1
http://dx.doi.org/10.1007/978-3-642-18092-7_1
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The evolution of a Brownian particle can be described (in a Cartesian three-
dimensional configuration space) by a dynamical equation [3]

ṙ = v(t), (2.55)

where v(t) is a velocity associated with the particle displacement r(t).Now, due to the
type of motion, v(t) is a stochastic process and, therefore, r(t)will also be a stochastic
process, which is obtained from r(t) (of course, not in the usual way how the concept
of time-derivative is understood). Thus, consider the microscopic density distribution
function (or, more specifically, the probability density) is ρ(r, t). This quantity gives
the probability that a Brownian particle can be found within a volume element dr of
the configuration space at a time t. By invoking the probability conservation property,
it can be shown that ρ(r, t) obeys a stochastic Liouville equation,

∂ρ(r, t)

∂t
= −Lρ(r, t), (2.56)

where the differential operator Lρ(r, t) ≡ −∇ · {v(t)ρ(r, t)} is itself a stochastic
operator because v(t) is a stochastic process. In the reciprocal k-space, (2.56)
becomes

∂ρ̃(k, t)

∂t
= −ik · v(t)ρ̃(k, t), (2.57)

where ρ̃(k, t) is the Fourier transform of ρ(r, t). The solution of (2.57) is readily
obtained to yield

ρ̃(k, t) = ρ̃(k, 0)e−i
∫ t

0 k·v(t ′)dt ′ . (2.58)

Since v(t) is a stochastic process, the probability distribution in Fourier space is
given by averaging over all possible paths,

I (k, t) = 〈ρ̃(k, t)ρ̃(k, 0)〉 ∝ 〈e−i
∫ t

0 k·v(t ′)dt ′ 〉. (2.59)

This is the definition of the characteristic function (see Appendix B) for the stochastic
variable or stochastic trajectory v(t), also called intermediate scattering function
within the context of diffusion processes [38]. In the same context, the time Fourier
transform of (2.59) is the so-called scattering law or dynamic structure factor (except
for some normalization factor),

S(ω, t) =
∫

e−iωt I (k, t)dt, (2.60)

which is directly related to the observable in diffusion experiments.
Assuming that the position stochastic variable is Gaussian, (2.59) can be reex-

pressed as
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I (k, t) = e−k2〈v2
k〉

∫ t
0 (t−τ)φ(τ)dτ , (2.61)

where φ(t) is the normalized velocity autocorrelation function and vk stands for the
velocity vector projected along k.According to the discussion above, for the motion
of the physical particle to behave as a Gaussian, Markovian process, a coarse graining
in time should be imposed by taking the long-time limit. Now, if the correlation time
is defined as

τc =
∫ ∞

0
φ(τ)dτ, (2.62)

equation (2.61) is approximated by

I (k, t) ∼ e−k2〈v2
k〉τct+δ, (2.63)

with δ = k2
∫∞

0 τφ(τ)dτ. The intermediate scattering function (2.63) is the solution
of the differential equation

∂ I (k, t)

∂t
= −k2〈v2

k〉τc I (k, t). (2.64)

If this equation is Fourier-transformed back to the configuration space, one obtains
the standard diffusion equation,

∂P(r, t)

∂t
= D∇2 P(r, t). (2.65)

In this equation, P(r, t) is the normalized autocorrelation function of the microscopic
number density ρ(r, t), with initial condition

P(r, 0) = δ(r − r0), (2.66)

and D = τc〈v2
k〉 is the diffusion coefficient. The solution of the diffusion equation

(2.65) is given by

P(r, t) =
(

1

4πDt

)3/2

e−(r−r0)
2/4Dt , (2.67)

which means that, as time goes on, the probability distribution gradually broadens,
leading to an irreversible motion.

So far diffusion has been described in the configuration space. Obviously, it also
admits a description in the velocity space or in the phase space. In the velocity space,
the diffusion equation is described by the Fokker–Planck equation [39–41],

∂P(v, t)

∂t
= γ∇v · [vP(v, t)]+ γkB T

m
∇2

v P(v, t), (2.68)



66 2 Dynamics of Open Classical Systems

with γ and D = γkB T/m being the drift and diffusion coefficients, respectively.
The probability density is again sharply peaked at v0 and, asymptotically in time,
it approaches the stationary Maxwellian distribution at temperature T. Regarding
the phase–space description, the corresponding diffusion equation is the so-called
Kramers–Chandrasekhar equation [6, 42, 43]. Within a more general context, it can
be shown [44] that all these diffusion equations can be obtained from the reduced
Liouville equation for one particle.

In 1940, Kramers [42] proposed a one-dimensional diffusion model for chemical
reactions based on the motion of a Brownian particle under the action of an external
potential V. In particular, originally V had the form of an asymmetric double well
potential. Within this model, the Langevin equation describing the evolution of the
reaction coordinate reads as

dq = vdt, (2.69a)

mdv = −
(

dV

dq
+ γmv

)
dt +√

2mγkB T dW (t). (2.69b)

Kramers was interested in the escape rate of the particle from a well. Two different
regimes were thus considered for the rate:

1. Strong friction, where the friction coefficient is greater than the barrier frequency
and the rate is limited by a spatial diffusion, decreasing as γ−1.

2. Weak friction, where, on the contrary, the rate is limited by an energy diffusion
process and increases linearly with γ .

These two extreme behaviors imply a maximum in between, namely the Kramers
turnover problem [45]. For example, in the strong friction regime, after a time of the
order of γ−1 all inertial effects have died out. This means that the left-hand side of
(2.69b) is equal to zero (i.e., dv = 0) and therefore (2.69a) can be approximated by

dq = − 1

mγ

dV

dq
dt +

√
2kB T

mγ
dW (t). (2.70)

The corresponding Fokker–Planck or Smoluchowski equation can then be
expressed as

∂P(q, t)

∂t
= − ∂

∂q

[
1

mγ

dV

dq
P(q, t)

]
+ 1

2

∂2

∂q2

[
2kB T

mγ
P(q, t)

]
. (2.71)

In general, solving numerically the Langevin set of equations (2.69) turns out to
be easier at any regime than dealing with partial differential equations, such as the
Fokker–Planck equation (2.71). In general, the Fokker–Planck equation can be solved
as an eigenvalue problem [21]. A quantum and classical theory of surface diffusion
based on Kramers’ theory of activated escape over one-dimensional potential barriers
was developed by Pollak et al. [46–48] and Mel’nikov [49, 50]. Applications to Na
atom diffusion on (corrugated) Cu surfaces can be found in the literature [51–53].
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In this case, the stochastic trajectories issued from the numerical resolution of
Langevin equations similar to the system constituted by (2.69) were used to build
the corresponding intermediate scattering function (2.59) and scattering law (2.60).

2.3.3 The System-plus-Bath Approach

The system-plus-bath approach is perhaps the most successful and useful way to
deal with stochastic dynamics, since it starts from a total system (system-plus-bath)
which is conservative. In the particular case of open quantum systems, it seems to be
the most natural approach. Notice that the passage from the classical system to the
quantum-mechanical one, i.e., the quantization of the classical system, can be done
in a straightforward way, applying different standard methods available in quantum
mechanics (e.g., via quantum-classical correspondence).

Within the system-plus-bath approach, the corresponding dynamics is commonly
described by a total Hamiltonian which is split up into three different parts,

H = HS + HB + HSB, (2.72)

where HS is the system Hamiltonian, HB is the bath Hamiltonian, and HSB is the term
describing the system-bath interaction or coupling. As mentioned above, the system
usually consists of a few degrees of freedom, while the environment is formed by a
huge number of them (even infinity). Moreover, it is reasonable to assume that the
coupling between them is a linear function of the bath coordinates. This property of
linearity is very convenient, since it is then very easy to eliminate the bath coordinates
in an exact way. In this regard, for extensive systems, like a reservoir, it is very
common to assume a set of N harmonic oscillators,

HB = 1

2

N∑
i=1

(
p2

i

mi
+ miω

2
i q2

i

)
, (2.73)

where qi and pi are the position and momentum of the ith oscillator, and mi andωi its
mass and frequency, respectively (this one-dimensional Hamiltonian can be extended
straightforwardly to three dimensions). Very often, the dissipation mechanism is
independent of the choice of this type of bath.

This kind of approach is widely used to describe stochastic processes where dissi-
pation and damping play a fundamental role. Without loss of generality, consider
the system is formed by only one degree of freedom and its Hamiltonian is
written as

HS = P2

2M
+ V (Q), (2.74)
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where M is the particle mass and V (Q) is an external potential acting on the particle.
The coupling between system and bath is generally expressed as a linear interaction
term with the following expression

HSB =
N∑

i=1

(
c2

i

miω
2
i

Q2 − 2ci qi Q

)
, (2.75)

ci being the strength of the linear coupling. The classical equations of motion for a
global system described by the total Hamiltonian H, which in the field of condensed
matter physics is known as the Caldeira–Leggett model Hamiltonian [46–48, 54],
leads to a generalized Langevin equation for Q(t),

M Q̈(t)+ M
∫ t

0
dt′γ (t − t ′)Q̇(t ′)+ ∂V (Q)

∂Q
= RG(t). (2.76)

Here, the memory kernel or time-dependent friction reads as

γ(t) =
∑

i

c2
i

miωi
cos(ωi t) (2.77)

and the external force RG(t) as

RG(t) = −
∑

i

ci

{[
qi (0)+ ci

miω
2
i

Q(0)

]
cos(ωi t)+ pi (0)

miωi
sin(ωi t)

}
. (2.78)

Given a suitably defined thermal distribution of initial conditions, denoted by
(Q(0), P(0)) and (qi (0), pi (0)), the external force is Gaussian distributed with zero
mean, obeying the classical fluctuation–dissipation theorem. The bath or reservoir
at a given temperature T is thus a source of noise displaying memory effects. The
friction, in this case, is not a constant, but a time-dependent function. Nonetheless, in
many physical situations, the memory kernel is a δ-function of time, which leads to a
constant (Ohmic) friction. Then, as mentioned above, the system dynamics becomes
Markovian, losing track of its past. As can be noticed, the generalized Langevin
equation (2.76) is equivalent to (2.32) when all initial conditions are set to zero (no
temperature) and the kernel (2.77) is similar to (2.33). Moreover, (2.76) reduces to a
standard Langevin equation in the Markovian approximation,

Q̈ + ∂V

∂Q
− γ Q = RG(t), (2.79)

with RG(t) = 2 γ δ(t).
Nonlinear functions in (2.75) can also be envisaged [23]. In such a case, the

open classical system becomes a state-dependent dissipation process and the random
force exhibits multiplicative noise (see Appendix B). This leads to noise-induced
transitions. This situation will not be considered in this monograph, although it is



2.3 Stochastic Dynamics 69

worth mentioning that nonlinear environments are the subject of intensive research
at present, since many important physical processes are better described in this way.

Very recently, some of the classical scattering singularities (rainbow, glory and
skipping effects) mentioned in Chap. 1 have been considered under a stochastic view-
point. The corresponding analysis has been carried out for adsorbate diffusion [53]
on surfaces as well as atom-surface scattering [55]. This analysis could be easily
extended to any type of scattering. The main features observed and interpreted in
terms of a stochastic analysis lead to broadenings and shiftings as a function of the
surface temperature. Friction-induced energy loss spectra have also been predicted
in atom-surface scattering [56].

2.4 The Stochastic Hamilton–Jacobi Equation

Even if the overall dynamics observed is conservative, one could consider the
possibility to understand this “regularity” as the result of an underlying stochastic
dynamics. The theory of open classical systems could be then applied to describe this
underlying motion. Specifically, assuming the corresponding motions are Brownian-
like, they could be described in terms of an Itô stochastic differential equation (see
Appendix B). In this case, the associated Itô stochastic equation reads [36, 57, 58] as

dr(t) = a+(r, t)dt + b dW(t), (2.80)

where a+ is the mean forward derivative of the particle position or displacement,
and b accounts for the strength of the stochastic force. The diffusion equation for the
corresponding probability distribution is described by the Fokker–Planck equation

∂P(r, t)

∂t
= −∇ · [a+(r, t)P(r, t)] + b2

2
∇2 P(r, t). (2.81)

Under time-inversion, this Fokker–Planck equation can also be written as

∂P(r, t)

∂t
= −∇ · [a−(r, t)P(r, t)] − b2

2
∇2 P(r, t), (2.82)

where a− now denotes the mean backward derivative of the particle position.
From the definitions for two mean derivatives, the particle mean derivative is now
defined as

v(r, t) = 1

2
(a+ + a−) . (2.83)

This allows to express the continuity equation for this process as

∂P(r, t)

∂t
+ ∇ · [v(r, t)P(r, t)] = 0 (2.84)

http://dx.doi.org/10.1007/978-3-642-18092-7_1
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after adding the Fokker–Planck equations (2.81) and (2.82). On the other hand, after
substraction of the two Fokker–Planck equations, an additional vector field can be
defined, namely the osmotic velocity,

u(r, t) = 1

2
(a+ − a−) = b2

2
∇ ln P(r, t), (2.85)

with its time-derivative being

∂u
∂t
= −b2

2
∇(∇ · v)−∇(v · u). (2.86)

It can be shown [36] that a mean acceleration in this kind of processes can also be
defined as

a = 1

2

∂

∂t
(a+ + a−)+ 1

2
a+ · ∇a− + 1

2
a− · ∇a+ − b2

4
∇2(a+ − a−). (2.87)

Hence, taking into account the definitions given above for the mean velocity (2.83)
and the osmotic velocity (2.86), the time-derivative resulting for v reads as

∂v
∂t
= a − v · ∇v + u · ∇u+ b2

2
∇2u. (2.88)

The above elements provide a full general hydrodynamic description of Brownian
motion. For an overall conservative dynamics—i.e., as arisen from a conserva-
tive Markovian diffusion process—, it is assumed that the Brownian particle is
moving in an external potential V (r) and the stochastic mean acceleration is given
as a = −∇V (r)/m. Then the time-derivative of the mean velocity field (2.88) can
be expressed as

∂v
∂t
= − 1

m
∇V (r)− v · ∇v + u · ∇u+ b2

2
∇2u. (2.89)

This equation provides now a complete general description of the hydrodynamics
of Brownian motion under the action of an external potential V. Actually, one can
further proceed. Thus, if the probability density is defined by a scalar field R(r, t)as

P(r, t) = e2R(r,t), (2.90)

then the osmotic velocity (2.85) is given by

u(r, t) = b2∇R(r, t). (2.91)

Similarly, the velocity field can also be defined in terms of the gradient of another
scalar field S(r, t),

v(r, t) = ∇S(r, t)

m
. (2.92)
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As it can be noticed (see Chap. 1), this equation is analogous to the corresponding
one for (classical) conservative systems, which establishes a relationship between
the particle velocity and its associated action. Taking this into account, (2.84) and
(2.89) can also be rewritten as

∂R

∂t
+ ∇

2S

2m
+ 1

m
∇R · ∇S = 0, (2.93a)

∂S

∂t
+ (∇S)2

2m
+ V − mb4

2
[(∇R)2 + ∇2 R] = 0. (2.93b)

The fields R and S can be determined except for a time-dependent phase. Equa-
tions (2.93) can be regarded as the hydrodynamic formulation of Newtonian
mechanics and constitute respectively the stochastic mechanic counterpart of the
classical continuity and Hamilton–Jacobi equations seen in Chap. 1. Note that (2.93b)
reduces to the classical Hamilton–Jacobi equation (1.15) for b = 0. Furthermore, it
is worth stressing that, within this framework, a conservative diffusion process has
been generated. As will be seen in Chap. 6, similar coupled equations are also found
in Bohmian mechanics.
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Chapter 3
Elements of Quantum Mechanics

3.1 Introduction

By the end of the nineteenth century, the available physical theories found a serious
drawback: they were not able to provide an explanation to a series of experimental
data. Well-known phenomena by the time, such as the black-body radiation or the
heat capacity of solids at low temperatures, as well as new surprising ones, such
as the X-rays or the radioactivity, required of a new atomic model. The simple
mathematical models built up to explain such phenomena gave then rise to two new
concepts in physics: the dual nature of electromagnetic radiation and the discreteness
of certain physical magnitudes. This conceptual framework constituted the core of
the so-called “old” theory of quanta [1], proposed by Planck and Einstein, and later
on Bohr’s atomic model was also incorporated.

The theory of quanta, however, presented a series of practical and conceptual flaws.
For example, it could not be applied to systems whose classical dynamics is aperiodic
or chaotic, thus giving rise to qualitative and incomplete descriptions of spectral lines.
On the other hand, conceptually, it did not explain why electrons move in stationary
orbits around the nuclei without emitting electromagnetic radiation, quantization
rules were postulated a priori, no mechanism was provided to explain emission
and absorption processes or the assumption of the duality of radiation seemed to be
contradictory—it behaves as a corpuscle in the emission and absorption processes, but
as a wave during the transit. However, in spite of Bohr’s efforts to keep this theory by
postulating the correspondence principle, with which certain success was achieved,
between 1925 and 1927 a new mathematical model appeared: quantum mechanics.
This new mechanics made apparent that Hamiltonian mechanics transcends classical
mechanics. Not only it constitutes an elegant framework to describe the motion of
the objects of the everyday life through the least action principle, as seen in Chap. 1,
but also the quantum world, as shown by Schrödinger, who derived his renown wave
equation by combining the so-called Hamiltonian analogy (see Sects. 3.2.1 and 7.2.2)
with de Broglie’s ideas of associating a wavelength to matter particles.
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Due to the relevance of quantum mechanics in the evolution of modern physics,
in particular, and science, in general, there are many interesting books about the
historical and conceptual development of this theory [1–4], which can be consulted
by the interested reader. Here these matters will not be discussed more than necessary;
this chapter mainly focusses on some of the most fundamental questions related to
the topic covered by this book. In particular, more detail accounts on interpretational
issues can be found in [2, 5, 6].

3.2 Fundamentals of Wave Mechanics

3.2.1 Hamiltonian Analogy and Calculus of Variations

As in classical mechanics, the fundamental equation of quantum mechanics, namely
the Schrödinger equation, can also be obtained through the calculus of variations,
though some simple physical hypotheses are eventually needed. Instead of consid-
ering a single independent variable (see Appendix A), consider now the more general
case of a function of several independent variables, the variational problem consisting
of finding a field function1 ψ which makes stationary the integral [7]

F[I ] =
∫ x1,b

x1,a

· · ·
∫ xn,b

xn,a

I (x1, · · · , xn, ψ,ψx1 , · · ·ψxn )dx1 · · · dxn, (3.1)

where ψxi ≡ ∂ψ/∂xi . Keeping fixed the initial and final configurations (i.e., δx1 =
· · · = δxn = 0), and then assuming the condition

δF =
∫
· · ·

∫
δ I dx1 · · · dxn = 0 (3.2)

holds, one finds

∂ I

∂ψ
−

n∑
i=1

∂

∂xi

∂ I

∂ψxi

= 0, (3.3)

which is equivalent (see Appendix A) to (A.5) for the ψ field. Of course, if instead
of a single function ψ there is a set of field functions ψ1, ψ2, · · · , ψn , the analogous
to (A.11) is obtained.

If some constraints are also specified, the problem belongs to the so-called isoperi-
metric class, as happens with Schrödinger’s equation (and any wave equation, in
general). Thus, consider one would like to obtain the real field ψ(x, y, z) such that
the square of its gradient has an extremum mean value within a certain space region
regardless of the particular boundary for such a region. This means that

1 Unless otherwise stated, the concept of field function (or, in brief, a field) will be used to denote
a function which depends on a set of independent variables.



3.2 Fundamentals of Wave Mechanics 77

δ

∫∫∫
(∇ψ)2dxdydz = δ

∫∫∫
(ψ2

x + ψ2
y + ψ2

z )dxdydz = 0, (3.4)

so, after applying (3.3), the so-called Laplace equation is found,

∇2ψ =
(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
ψ = 0. (3.5)

This equation describes the field ψ (regardless what this field represents physically)
in vacuum. Additionally, it is required the integral of the square of ψ acquires some
given value, which implies the extra condition J1 = ψ2 (see Appendix A). According
to (A.14),

(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 − λ
)
ψ = (∇2 − λ)ψ = 0, (3.6)

which is the wave equation describing a single-frequency or monochromatic wave
in vacuum, i.e., a sinusoidal perturbation of the field ψ in vacuum, such that both
ψ2 and (∇ψ)2 have a minimum mean value.

In order to find Schrödinger’s equation, let us consider the following reasoning.
As seen in Chap. 1, in classical mechanics the dynamics of a system is described by
a trajectory, which arises after integrating the corresponding equations of motion.
These equations come from considering that the system energy is constant along
time. The same prescription can be followed in quantum mechanics, although the
system Hamiltonian is given in terms of an operator,

Ĥ = p̂2

2m
+ V (q̂) = − �

2

2m
∇2 + V (x, y, z), (3.7)

instead of a function of the generalized coordinates and momenta. Here, Cartesian
coordinates have been chosen for simplicity (but without loss of generality), where
p̂ j ≡ −i�∂/∂q j is the momentum operator, with j = x, y, z and, e.g., qx = x .
In order to determine ψ , it is required that the average total energy,

〈Ĥ〉 =
∫∫∫

ψ∗ Ĥψdxdydz, (3.8)

becomes a minimum with the additional (normalization) condition
∫∫∫

ψ∗ψdxdydz = 1. (3.9)

Assumingψ vanishes sufficiently fast at the boundaries of the integration limit, (3.8)
can be expressed [8] as

∫∫∫ [
�

2

2m
(ψ∗xψx + ψ∗yψy + ψ∗z ψz)+ ψ∗Vψ

]
dxdydz = 0, (3.10)
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which is symmetric in ψ and its conjugate complex, ψ∗. Considering K = I − λJ1
(see (A.13)) for convenience (this does not affect the final result, as will be seen),
and then applying the calculus of variations,

(
− �

2

2m
∇2 + V

)
ψ = Ĥψ = λψ, (3.11a)

(
− �

2

2m
∇2 + V

)
ψ∗ = Ĥψ∗ = λψ∗, (3.11b)

the latter being the conjugate complex equation of the former, this implying λ has to
be a real quantity.

The functionsψ and ψ∗ obtained from (3.11a) and its conjugate complex (3.11b)
are extremals that make the integral (3.8) to be stationary. If the stationary value
is regarded as the system energy E, then, by multiplying the last term in (3.11a)
by ψ∗ and then integrating over space (or proceeding similarly with (3.11b), but
considering ψ), one finds that λ= E . Therefore, (3.11a) (or, equivalently, its conju-
gate complex) can be expressed in the more familiar form

Ĥψ = Eψ, (3.12)

which is the well-known time-independent Schrödinger equation. In general, in most
cases of physical interest E is a minimum, this being the basis of the so-called varia-
tional or Ritz method [7, 9], devised to obtain approximate solutions to Schrödinger’s
equation.

Now a description on how Schrödinger derived (3.12) [8, 10–12] and the wave
theory by combining the so-called Hamiltonian analogy [13, 14] (see also Chap. 7)
with de Broglie’s ideas of associating a wavelength to matter particles [15] will be
presented. This physical model establishes a direct, formal correspondence between
optics and the Hamiltonian description of classical mechanics [16, 17]. Thus, consider
a system of mass m with an energy E described by a certain Hamiltonian within the
Hamilton–Jacobi prescription, i.e.,

H(qk, ∂S/∂qk) = E, (3.13)

where qk denotes the system generalized coordinates, S is the system action and
the generalized momenta are given by pk = ∂S/∂qk (see Chap. 1). In Cartesian
coordinates,

E = 1

2m

(
p2

x + p2
y + p2

z

)
+ V (x, y, z), (3.14)
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which can be expressed as

(∇S)2 = 2m(E − V ) (3.15)

within the Hamilton–Jacobi scenario. Equation (3.15) is very similar to the eikonal
equation from geometric optics (see Chap. 4),

(∇Sopt)2 = n2, (3.16)

which describes a light ray when it travels through a medium with refractive index
n, and where Sopt is a constant-phase surface (the superscript “opt” is used in order
to distinguish it from the mechanical action S). If the medium is homogeneous, n is
constant and the solution to (3.16) is

Sopt = n(αx + βy + γz), (3.17)

where α, β and γ are the direction cosines in the three directions, x, y and z,
respectively, and satisfy the relationship α2 + β2 + γ2 = 1. Geometric optics is the
k →∞ limit (or, equivalently, the λ = 2π/k → 0 limit) of wave optics, where the
basic equation is the so-called Helmholtz equation2 (see Chap. 4),

(∇2 + k2)Ψ = 0. (3.18)

The solution to this equation is a plane wave that can be expressed as

Ψ (x, y, z) = Aeik·r = eik(αx+βy+γz) = eikSopt/n . (3.19)

As it can be noticed, substituting the last expression in (3.19) into (3.18) and then
assuming the limit k →∞, the eikonal equation (3.16) is recovered.

The whole point of the Hamiltonian analogy is now to establish the relationship
between optical and mechanical systems. Actually, quoting Sommerfeld [17],

Ray optics is the mechanics of light particles; in optically inhomogeneous media the paths
of these particles are by no means straight lines, but are determined by Hamilton’s ordi-
nary differential equations or Hamilton’s principle which is equivalent to them. From the
viewpoint of wave optics, on the other hand, the rays of light are given by the orthogonal
trajectories of a system of wave surfaces or wave fronts.

Thus, in analogy to (3.19), the general solution to (3.15) reads as

S = κ lnΨ, (3.20)

2 Actually, this point in common between scalar optics and quantum mechanics has allowed that
many solutions to problems within the latter were directly adapted from well-known nineteenth
century solutions from the former [18].
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which leads to the equation

(∇Ψ )2 − 2m

κ2 (E − V )Ψ 2 = 0, (3.21)

where it is apparent the closeness between this expression and the one given by
I − λJ1 above. In order to find the solution Ψ , variations over the field Ψ are
considered, which renders the well-known Schrödinger equation,

∇2Ψ + 2m

κ2 (E − V )Ψ = 0. (3.22)

Applying this equation to the hydrogen atom and seeking for its solutions, Schrödinger
found κ had to be equal to �. Thus, Eq. (3.22) is the explicit form of (3.12).

In order to derive now the time-dependent Schrödinger equation, note that its time-
independent version relies on the classical assumption that, within the (classical)
Hamilton–Jacobi framework, the energy arises from the relation (1.17). Therefore,
if the energy does not have a definite value, E can be replaced by (1.17) in the
time-independent Schrödinger equation (3.12). Then, replacing S by Ψ ,

H(q, i�∂/∂q)Ψ (q, t) = i�
∂

∂t
Ψ (q, t), (3.23)

where the time-dependent Schrödinger equation is readily recognized. This equation
can also be expressed in the more commonly used form

− �
2

2m
∇2Ψ + VΨ = i�

∂Ψ

∂t
. (3.24)

Alternatively, (3.24) can also be derived by means of the mirror-image method
seen in Sect. 2.2.3, which allows us to establish a closer connection with the derivation
leading to (3.12) in terms of the variational principle. Note that assuming that D is
an imaginary diffusion constant with value i�/2m and substituting it into (2.28a),
this equation becomes the time-dependent Schrödinger equation for a free particle
(V = 0) and Ψ (in the corresponding complex diffusion equation) becomes complex
valued. Since Ψ is a complex quantity, this function and its complex conjugate
can be considered as independent variables, with the latter being the mirror-image
(Ψ̄ = Ψ ∗) of the former. Hence, the problem of a particle of mass m subject to the
action of an external potential V can be formulated in terms of (2.27) as

L = − �

2i

(
Ψ ∗ ∂Ψ

∂t
− Ψ ∂Ψ

∗

∂t

)
− �

2

2m
∇Ψ · ∇Ψ ∗ − Ψ ∗VΨ. (3.25)

Requiring now the integral in space and time L becomes an extremum for both
Ψ and Ψ ∗ gives rise to the time-dependent Schrödinger equation (and its complex
conjugate).

http://dx.doi.org/10.1007/978-3-642-18092-7_1
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By further proceeding within this theoretical framework and computing the
respective canonical momenta, one finds

pt = ∂L
∂Ψ̇
= − �

2i
Ψ ∗, p̄t = ∂L

∂Ψ̇ ∗
= �

2i
Ψ, (3.26a)

pq = ∂L
∂Ψq
= − �

2

2m
∇Ψ ∗, p̄q = ∂L

∂Ψ ∗q
= − �

2

2m
∇Ψ, (3.26b)

which correspond to the time and space momentum densities associated with the
Lagrangian density L. Taking this into account, a “stress tensor” can be defined as

Wmn = Ψ ∗m
∂L
∂Ψ ∗n
+ Ψm

∂L
∂Ψn
− δmnL, (3.27)

where Ψm ≡ ∂Ψ/∂αm , with αm = (x, y, z, t) (m = 1, 2, 3, 4). In this way, if
m = n = 4, the Hamiltonian energy density can be expressed as,

W44 ≡ H = �
2

2m
∇Ψ ∗ · ∇Ψ + Ψ ∗VΨ, (3.28)

while the energy density flow vector arises from the W4k components of the stress
tensor, i.e.,

S =W41i+W42j+W43k = − �
2

2m

[(
∂Ψ ∗

∂t

)
∇Ψ +

(
∂Ψ

∂t

)
∇Ψ ∗

]
. (3.29)

These two quantities satisfy the continuity equation for the energy density,

∂H
∂t
+∇ · S = 0. (3.30)

The Hamiltonian energy density and the energy flow vector are the analogous to the
electromagnetic energy density and Poynting vector, respectively, as will be seen in
Chap. 7, which also satisfy a continuity equation similar to (3.30). On the other hand,
from the momentum density vector field,

−J =W14i+W24j+W34k = − �

2i

[
Ψ ∗∇Ψ − Ψ∇Ψ ∗] , (3.31)

the quantum probability current density can be obtained, which also satisfies a conti-
nuity (or conservation) equation similar to (3.30) with respect to the quantum prob-
ability density,

http://dx.doi.org/10.1007/978-3-642-18092-7_7
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∂ρ

∂t
+∇ · J = 0. (3.32)

with ρ = |Ψ |2.

3.2.2 Waves and Uncertainty

Usually the wave function is expressed in the configuration or coordinate represen-
tation, i.e., in the space of all possible configurations a physical system, process
or phenomenon may explore. From this wave function, any physical information
or observable A can be extracted by calculating the corresponding expectation or
average value,

A ≡ 〈 Â〉 =
∫
ψ∗(r) Âψ(r)dr. (3.33)

In configuration space,ψ(r) is diagonal, which means that the action of any operator
depending only on the coordinates will be equivalent to multiplyψ(r) by a function of
the coordinates with the same functional form of such an operator. This is the case, for
example, of the potential energy operator, where V̂ (r̂)ψ(r) = V (r)ψ(r). However,
the momentum operator, p̂ = −i�∇, or the kinetic energy one, K̂ = −(�2/2m)∇2,
are not diagonal in the configuration space and imply to carry out some operations on
ψ (in these cases, to compute ∇ψ or ∇2ψ , respectively). Hence, working with the
corresponding operator and the wave function in the same space results advantageous.

In those cases where properties associated with the momentum must be computed,
it is interesting to express the wave function within the momentum representation.
Since position and momentum are canonically conjugate variables, there is a relation-
ship between them, which in quantum mechanics translates into a non-commutativity
when operating with them, i.e., it is not the same to operate first with the position
and then with the momentum than the other way around. This is formally expressed
through the well-known non-vanishing commutation relation,

[x̂, p̂] = i�. (3.34)

In order to illustrate the passage from one representation to the other, first the eigen-
functions must be computed for the eigenvalue equation

p̂φ(x) = −i�
∂φ(x)

∂x
= pφ(x), (3.35)

which can be easily shown to be

φ(x) = 1√
2π

eikx (3.36)
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after formal integration by parts. The solutions (3.36) are plane waves with momentum
p, which are normalized with respect to a cycle of phase, 2π (or to a phase–space
cell, 2π�, if the argument of the exponential is expressed as i px/�). Taking this into
account, any wave function can be decomposed in configuration space as a sum of
plane waves,

ψ(x) = 1√
2π

∫
ψ̃(k)eikx dk = 1√

2π�

∫
ψ̃(p)eipx/�dp, (3.37)

which is just the inverse Fourier transform of the wave function in momentum space.
Obviously, the latter is the Fourier transform of ψ(x),

ψ̃(p) = 1√
2π�

∫
ψ(x)e−i px/�dx, (3.38)

where e−i px/�/
√

2π� represents, in general, a plane wave eigenfunction of the posi-
tion operator in the momentum space, x̂ = i�∂/∂p.

The relationship between position and momentum through a Fourier transform is
already a “suspicious” indication of the non-commutativity of their corresponding
operators. This brings about another very important physical consequence, the
so-called Heisenberg’s uncertainty principle [19], according to which it is not
possible to measure with an infinite accuracy the values of both members of a canon-
ically conjugate pair of physical variables. In other words, the relationship between
the dispersion of these variables,

ΔxΔp ≥ �

2
, (3.39)

where (Δx)2 = 〈(x̂ − 〈x̂〉)2〉 and (Δp)2 = 〈( p̂ − 〈 p̂〉)2〉, always holds. However,
there is also something suspicious here: as happens with the case of evanescent waves
and tunneling, the uncertainty relation (3.39) and, therefore, the uncertainty principle
is not a result particular of quantum mechanics, but general of any wave theory, since
Δx andΔp only measure the dispersions associated with a wave, without specifying
the physics described by such a wave. Actually, the uncertainty relation is valid for
any square integrable function and its Fourier transform. As it can be shown [20, 21],
if a function f (x) is integrable, square-integrable and normalized (L2-normalized),
it will satisfy Plancherel’s theorem [22],

∫ ∞
−∞
| f (x)|2dx =

∫ ∞
−∞
| f̃ (ξ)|2dξ = 1, (3.40)

where f̃ (ξ) is the Fourier transform of f, and therefore it can be shown that their
dispersions around their corresponding mean values, x0 and ξ0, obey the relation

Dx0( f )Dξ0( f̃ ) ≥ 1

16π2 , (3.41)
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where

Dx0( f ) =
∫
(x2 − x2

0 )| f (x)|2dx, x0 =
∫

x | f (x)|2dx, (3.42a)

Dξ0( f̃ ) =
∫
(ξ2 − ξ2

0 )| f̃ (ξ)|2dξ, ξ0 =
∫
ξ | f̃ (ξ)|2dξ. (3.42b)

In the problem of the particle in a box, for example, one finds that the eigenstates
satisfy the uncertainty relation

ΔxΔp = nπ� > �/2, (3.43)

for all n, while in the case of the linear harmonic oscillator,

ΔxΔp = (n + 1/2)� ≥ �/2. (3.44)

In this latter case, the equality holds for n = 0.This is related to the fact that Gaussian
functions, which have an also Gaussian Fourier transform, have minimum spreading
[23]. This is the reason why in quantum mechanics Gaussian wave packets are called
minimum uncertainty wave packets.

In classical mechanics, the uncertainty relation does not hold (except for clas-
sical wave mechanics) and, therefore, in principle one could have ΔxΔp = 0 if the
dispersion in both coordinates and momenta is zero (e.g., when dealing with a point
on phase space, since there is no limitation to the accuracy in the measurements).
This is the usual argument considered to emphasize the difference between classical
mechanics and quantum mechanics. However, it is important to stress that, if ψ is
regarded as a quantity providing statistical information, it should not be compared
with a single classical phase–space point, but with a classical distribution or a classical
wave, which in general do present a dispersion. On the other hand, it is interesting
to note that in the same way that the relation ΔxΔp → 0 describes the passage to
Newtonian mechanics (statistically speaking), in optics there is a “twin” relation,
ΔxΔk � 1, which describes the passage from wave to geometric optics [17]: when-
ever the light wavelength is much smaller than the dimensions of the objects it finds
along its pathway, the geometric optical description will be valid.

3.2.3 Eigenvalues, Probabilities and Time-Evolution

The spectral lines observed by Fraunhofer about 200 years ago correspond to solu-
tions of the Schrödinger equation derived about 100 years after Fraunhofer’s findings.
This equation gives us the energy at which spectral lines should be observed, but it
also gives us information about how electrons move around nuclei. According to
Born’s statistical interpretation [24–29], the wave amplitude ψn provides no infor-
mation about individual processes or systems, but it is just a statistical quantity which
describes the distribution (over the corresponding sampling space) of an ensemble of
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identical processes or systems. Actually, such a measurement is given by the prob-
ability density, ρn ≡ |ψn|2, which is a real quantity. There are, of course, different
interpretations of the wave function, this issue still remaining open [30]. However,
the importance of Born’s interpretation relies on the fact that it directly comes from
the empirical evidence (remember that Born’s proposal was based on his studies on
spectra obtained from scattering experiments): a single experimental detection or
measurement is meaningless, only a collection of them is of interest. For example, in
the case of the hydrogen atom, ρn describes how electrons distribute around nuclei in
a sample or, equivalently, the probability to find the electron at a certain place. When
the state ψn is expressed in configuration space, i.e., as a continuous function ψn(r)
of the radial coordinate r, Bohr radius indicates the most likely position to find the
electron in the case that it is in the lowest or ground energy level ψ0 (i.e., the value
of r at which ρ0 reaches its maximum value), which corresponds to the electron’s
orbit radius within Bohr’s former atomic model.

Apart from being at different distances r from the nucleus, the electron can also
be in different excited energy levels ψn with n �= 0. To account for this fact, the
state of the atom is described by a wave function consisting of a superposition
of all possible eigensolutions or eigenstates associated with the time-independent
Schrödinger equation,

|ψ〉 =
∑

n

cn|ψn〉, (3.45)

which has been expressed purposely in Dirac’s notation. From (3.45), the density
operator (it specifies the state of the system) is defined as

ρ̂ ≡ |ψ〉〈ψ |, (3.46)

whose associated density matrix with (m, n) element is given by

ρmn = 〈ψm |ρ̂|ψn〉 = Tr [|ψn〉〈ψm |ρ̂] = c∗mcn, (3.47)

where Tr[ · ] ≡ 〈ψ | · |ψ〉 denotes the trace of the operator in between the square
brackets. Thus, when the measurement is carried out, the probability to find the
electron in the state ψn (or, equivalently, to observe a transition to this state) is given
by ρnn = |cn|2. Because there is a large number of hydrogen atoms when this kind
of experiments are carried out, each one will absorb or emit a photon in a different
transition, which in a photograph plate appears as a series of several well-defined
spectral lines—the problem of how a particular ρn is detected constitutes the central
problem of the theory of measurement [31], which goes beyond the scope of this
chapter and book (it is briefly discussed in Appendix B). In this sense, the value of
the dynamical variable describing the system or observable is given as in classical
mechanics by an averaging (see (3.33)), the density matrix being obtained from the
also called statistical operator. Usually three conditions are required to be satisfied
by the density operator representing the state of a system:
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1. It is normalized, i.e., Tr(ρ̂) = 1.
2. It is self-adjoint (Hermitian), i.e., ρ̂† = ρ̂, for the observable to be real.
3. It is nonnegative, i.e., 〈u|ρ̂|u〉 ≥ 0, for any arbitrary vector |u〉 of unit norm

which is associated with a certain observable (represented by a projection operator
Pu = |u〉〈u|).

From these three properties, and taking into account (3.45)–(3.47), one finds the
following properties for the matrix elements ρmn :

1.
∑

n ρnn = 1.
2. ρ∗nm = ρmn (and, therefore, ρnn is real).
3. ρnn ≥ 0.

Note from these properties that 0 ≤ ρnn ≤ 1. A set of mathematically acceptable
state operators, {ρ̂(i)}, is said to be convex if all these operators satisfy the above three
properties and therefore a linear (convex) combination ρ̂ =∑

i ai ρ̂
(i) can be formed,

such that 0 ≤ ai ≤ 1 and
∑

i ai = 1. Pure states constitute a particular class,
characterized by their relatively simple properties. For example, their associated
density matrix is idempotent, i.e., ρ̂2 = ρ̂, and therefore

〈ρ̂〉 = Tr[ρ̂] = Tr[ρ̂2] = 1. (3.48)

On the contrary, statistical mixtures are described by nonpure or mixed states3 the
corresponding density matrix is no longer idempotent and, therefore, Tr[ρ̂2] ≤
Tr[ρ̂] = 1. The theory of open quantum systems (see Chap. 5) makes special
emphasis on this kind of distinction, for non isolated or open (quantum) systems
have to be described by means of mixed states.

In general, for a given observable A, its expectation value can also be calculated
from

A ≡ 〈 Â〉 = Tr[ρ̂ Â], (3.49)

which is the generalization of (3.33). For time-dependent averages, the temporal
evolution of the density operator needs to be known. The corresponding equation
of motion is the so-called quantum Liouville equation which in the Schrödinger
representation reads as

dρ̂(t)

dt
= − i

�
[Ĥ , ρ̂(t)] ≡ Lρ̂(t), (3.50)

where L is the Liouville operator. This equation is sometimes converted to an integral
equation, which is solved in an iterative way. Very often, the time-evolution of the

3 For a more detailed discussion on the properties (and differences) between pure and nonpure or
mixed states, see, for example, [28, 29].

http://dx.doi.org/10.1007/978-3-642-18092-7_5
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matrix elements of the density operator are necessary for quantum transitions within
a perturbation treatment as, for example, the optical Bloch equations in the theory
of coherent optical phenomena. In Chap. 5, the Liouville equation is extended to
consider open quantum systems. This equation is also necessary when quantum corre-
lation functions have to be evaluated. Similar equations can be derived depending on
the representation or picture of quantum mechanics chosen for any dynamical vari-
able. Thus, for example, in the Heisenberg representation, the equation of motion of
Â becomes

d Â(t)

dt
= − i

�
[ Â(t), Ĥ ], (3.51)

which differs from (3.50) in a negative sign.
According to von Neumann [32], in quantum mechanics there are two processes

involved. The first process is causal and reversible, and it carries our system from a
certain initial state to another one following Schrödinger’s time-dependent equation.
The second one, the measurement process mentioned above, which is noncausal and
irreversible, accounts for the fact a discrete atomic spectrum is observed. A relatively
simple way to tackle the problem of time-dependence is by considering the fact that
any wave function can be decomposed as a superposition of eigenstates of the Hamil-
tonian, i.e., eigenstates in an energy representation. Since the time-dependence of
one of such eigenstates is given by a phase depending linearly on time (because of the
separation of space and time variables allowed by the time-independent Schrödinger
equation), the evolution of the corresponding wave function, say (3.45), can be readily
written as

|Ψ (t)〉 =
∑

n

cne−i Ent/�|ψn〉. (3.52)

If the eigenstates are given in the coordinate representation, i.e., φn(r) = 〈r|ψn〉,
then

Ψ (r, t) =
∑

n

cnφn(r)e−i Ent/�, (3.53)

where

cn =
∫
φ∗n (r)Ψ (r, 0)dr. (3.54)

Consider, for example, a Gaussian wave packet initially centered around x = a
in a linear harmonic oscillator potential V = mω2x2/2,

Ψ (x, 0) =
(

1

2πσ 2
0

)1/4

e−(x−a)2/4σ 2
0 , (3.55)

http://dx.doi.org/10.1007/978-3-642-18092-7_5
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whose exact time-evolution is described by

Ψ (x, t) =
(

1

2πσ 2
0

)1/4

e−(x−a cosωt)2/4σ 2
0−iωt/2−imω(4xa sinωt−a2 sin 2ωt)/4�,

(3.56)

with σ 2
0 = �/2mω. Taking into account the spectral decomposition corresponding

to a harmonic oscillator (see Volume 2), (3.56) can be expressed as

Ψ (x, t) =
∞∑

n=0

Anun(x)e
−i Ent/� = e−iωt/2

∞∑
n=0

Anun(x)e
−inωt , (3.57)

where En = (n+ 1/2)�ω, un are the corresponding eigenfunctions or eigenstates,
and

An =
∫ ∞
−∞

u∗n(x)Ψ (x, 0)dx = α2e−α2/4

√
2nn! , (3.58)

with α2 = a2/2σ 2
0 . As it can be noticed, the probability density associated with the

wave function (3.56),

ρ(x, t) =
√

1

2πσ 2
0

e−(x−a cosωt)2/2σ 2
0 , (3.59)

moves back and forth in time periodically, but does not change its shape, which
remains the same as ρ(x, 0) at any time. On the other hand, two limits are interesting
when (3.58) is considered. If a → 0, then n → 0 and the wave function becomes
the ground state of the linear harmonic oscillator. On the contrary, if a increases and
n→∞, using Stirling’s formula in (3.58) and neglecting terms of the order ln n or
lower,

ln An ≈ n

(
ln α − ln 2

2

)
− n

2
(ln n − 1), (3.60)

which has a maximum for n̄ ≈ α2/2. Substituting this value into En , one finds
the classical expression for the energy of an oscillator with maximum amplitude a,
En̄ ≈ Ecl = mω2a2/2.

In the case of scattering problems, on the other hand, it is convenient to express
the wave function as a linear combination of plane waves, which are eigenstates
of the momentum operator, p̂=−i�∇. Actually, at asymptotic distances, where
V ≈ 0, this operator and the kinetic energy one, K̂=−(�2/2m)∇2, commute (i.e.,
[K̂, p̂]= 0) and, therefore, both share the same basis of eigenfunctions with eigen-
values E = p2/2m= �

2k2/2m—indeed, the momentum eigenfunctions are degen-
erate in the energy representation, since two eigenvalues p and −p, for example,
correspond to the same eigenenergy E. Thus, as before, the wave function is
expressed as
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Ψ (x, t) =
∫

Akuk(x)e
−i Ek t/�dk, (3.61)

where

Ak =
∫

u∗k(x)Ψ (x, 0)dx (3.62)

and Ek = �
2k2/2m is the energy eigenvalue associated with the eigenfunctions uk for

the momentum eigenvalues k and−k. If some boundary conditions are imposed (e.g.,
box normalization or Born–von Karman periodic boundary conditions), a quantiza-
tion of the solutions appears and the basis of momenta (energies) becomes discrete.
This implies that (3.61) has to be expressed as a sum, i.e.,

Ψ (x, t) =
∑

k

Akuk(x)e
−i Ek t/�. (3.63)

As an example, consider the case of the minimum uncertainty wave packet [23],
i.e., a wave packet for which the equality holds in the position-momentum uncertainty
relation (see Sect. 3.2.2), which can initially be described by

Ψ (x, 0) =
(

1

2πσ 2
0

)1/4

e−(x−x0)
2/4σ 2

0+i p0x/�. (3.64)

In free space (but normalizing to a box of length L), the optimum basis set consists
of plane waves uk(x) = eikx/

√
L , with momentum and energy eigenvalues k =

2πn/L and Ek = �
2k2/2m, respectively. Taking this into account,

Ak =
(

8πσ 2
0

L2

)1/4

e−k2σ 2
0 (3.65)

and, therefore, the time-evolution of (3.64) will be expressed by

Ψ (x, t) =
∑

k

Akuk(x)e
−i Ek t/�. (3.66)

If L →∞, the basis set approaches a continuum and then

∑
k

→ L

2π

∫
dk. (3.67)

Introducing this approximation into (3.66),

Ψ (x, t) =
(
σ 2

0

2π2

)1/4 ∫
e−k2x2

eikx e−i Ek t/�dk

=
(

1

2πσ̃ 2
t

)1/4

e−(x−v0t)2/4σ̃tσ0+i p0(x−v0t)/�+i Et/�, (3.68)
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where v0 = p0/m = 〈 p̂/m〉, E = p2
0/m = 〈Ĥ〉, σ̃t = σ0(1+ i�t/2mσ 2

0 ) and

σt = σ0

√
1+

(
�t

2mσ 2
0

)2
(3.69)

is the time-dependent spreading of the wave packet. Note that, contrary to the case
of the linear harmonic oscillator, here the wave packet spreads as it propagates, since

ρ(x, t) = 1√
2πσ 2

t

e−(x−v0t)2/2σ 2
t . (3.70)

By inspecting (3.66) and the first line of (3.68), one finds the right-hand side in
both cases can be expressed as

Ψ (x, t) =
∑

n

Ψ̃ (k, t)eikn x , (3.71a)

Ψ (x, t) = 1√
2π

∫
Ψ̃ (k, t)eikx dk, (3.71b)

respectively. That is, the wave function in configuration space can be expressed as
the Fourier transform of a certain wave function Ψ̃ (k, t) in momentum space (and
vice versa)—obviously, the same holds at t = 0 between ψ(x) and ψ̃(k). This is a
very important issue, because it establishes a correlation between coordinates and
momenta (i.e., in phase space), explaining why there is an uncertainty principle to
be satisfied in quantum mechanics (see Sect. 3.2.2) or why phase–space distributions
are characterized by regions where negative values are reached, like the Wigner one
(see Sect. 3.3.1).

3.2.4 Probability Current Densities and Tunneling

Consider a stream or flux of identical and independent particles traveling through
configuration space (for simplicity, in one dimension) with a given energy E. As seen
above, this can be represented by a plane wave,

ψ(x) = Aeikx , (3.72)

such that E = �
2k2/2m.Note that ρ(x) is independent of x and, therefore, according

to Born’s statistical interpretation the probability to find a particle everywhere is
the same, which is equivalent to say that statistically the particles distribute equally
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through the whole configuration space. Since the probability to find the particle in
the whole space should be unity, one could assume a large box and normalize with
respect to this box, as in the previous Section. However, in the continuum it is also
very common to normalize with respect to the incident flux, i.e., A ∼ k−1/2, which
has to do with the quantum probability current density, as seen below.

Because there is a flux of particles, apart from the probability density, one can
focus on the number of particles that passes through a certain region or area (and
per time unit, if time is involved). One way to determine this quantity is as follows.
Multiplying (3.11a) and (3.11b) on the left by ψ∗ and ψ , respectively, assuming
λ = E , and then subtracting the resulting equations, after rearranging terms one
finds

∇ ·
(
ψ∗p̂ψ − ψ p̂ψ∗

2m

)
= 0, (3.73)

where p̂ = −i�∇ is the momentum operator. If the wave function is expressed in
polar form, ψ = ρ1/2ei S/�, (3.73) can be recast as

∇ ·
(
ρ
∇S

m

)
= 0. (3.74)

Now, defining the (phase) velocity v ≡ ∇S/m, the expression between brackets
can be identified with a current density, specifically the quantum probability current
density,

J = 1

m
Re[ψ∗p̂ψ] = �

2im
[ψ∗∇ψ − ψ∇ψ∗] = vρ. (3.75)

Accordingly, (3.73) establishes that for a given stationary state the net flux of particles
is always zero, with the stationary flux of such particles being described by J, whose
direction at each point of configuration space is given by v; at such a point, the particle
density (probability density) is given byρ.This result is very similar to the one known
from electromagnetism (see Chap. 4), where the role of J is played by the so-called
Poynting vector. Substituting (3.72) into (3.75), one finds J = (�k/m)|A|2 = v|A|2,
i.e., (3.72) effectively describes a (stationary) particle flow which moves with velocity
v = �k. One can therefore consider this flux to be unity (i.e., J = 1), which would
imply the normalization condition mentioned above, A = v−1/2 ∼ k−1/2, commonly
used in scattering problems.

It is sometimes useful to deal with the so-called flux operator. If P̂ = |r〉〈r|
is the position projection operator, then 〈P̂〉 = |Ψ (r)|2 = ρ(r). One then could
write a continuity-like equation for P̂ from the Heisenberg equation given by (3.51)
for P̂ as

d P̂

dt
+ dĴ

d r̂
= 0 (3.76)

http://dx.doi.org/10.1007/978-3-642-18092-7_4
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where the probability flux density operator Ĵ is defined according to

Ĵ = 1

2m
[P̂p̂+ p̂P̂] (3.77)

being 〈Ĵ〉 = J(r).
Now, let us consider the effect of placing an obstacle in the way of the wave

(3.72), which will lead to the phenomenon of quantum tunneling. This effect has
been recently treated in two books [33, 34]. The quantum tunnel effect, the possibility
for a system to pass from one state A to a state B through an energetic barrier (see
Volume 2), is considered paradigmatic in quantum mechanics. Nevertheless, this is
a general phenomenon appearing whenever a physical system is describable by a
wave equation and there is a coupling of “evanescent” waves [35], as also happens in
optics [14] (see Sect. 4.4). It was proposed as a physical mechanism in 1928, shortly
after the appearance of Schrödinger’s equation, to explain the field electron emission
[36] and the alpha decay [37, 38] (it is remarkable that these effects were known
since the end of the nineteenth century [39, 40], about 30 years before they could be
satisfactorily explained). Nevertheless, a year before, in 1927, Friedrich Hund was
the first to notice the possibility of tunneling, which he called barrier penetration, in
a calculation of the ground state in a double-well potential. The phenomenon arises,
for example, in the inversion transition of the ammonia molecule. Nowadays it can
be found in a myriad of applications and not only in tunnel microscopy or nuclear
physics, the most important possibly being within the fields of semiconductors and
superconductors or enzyme chemical reactions (catalysis reactions) because of their
direct technological impact on society.

In order to illustrate the physics of the tunnel effect, consider the case of a particle
scattered by a square barrier of width a and height V0 [23], i.e., V (x) = V0 for 0 ≤
x ≤ a and zero everywhere else. Asymptotically, the particle is force-free and,
therefore, it can be described by a plane wave like (3.72), i.e.,

ψI(x) = eikx + re−ikx , (3.78a)

ψIII(x) = teik, (3.78b)

where I and III label the regions x < 0 and x > a, respectively. Physically, (3.78a)
describes an incident or incoming wave with momentum �k and the reflected wave,
with opposite momentum, −�k; (3.78b) represents the transmitted wave behind the
barrier, which evolves with momentum �k. Moreover, the number or density of
particles is normalized to 1, so that the number of particles reflected and transmitted
will be R = |r |2 and T = |t |2, respectively (in this way, R + T = 1). Actually, if
(3.78a) and (3.78b) are introduced into (3.75),

JI(x) = Ji + Jr = v − vR, (3.79a)

JIII(x) = Jt = vT, (3.79b)

i.e., Ji = Jt − Jt .

http://dx.doi.org/10.1007/978-3-642-18092-7_4
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Now, R and T can be determined as follows. Consider again the continuity of the
wave function and its first derivative at the boundaries with the barrier. This implies
that within the barrier (i.e., for 0 ≤ x ≤ a) solutions should look like

ψII(x) = αeik′x + βe−ik′x , (3.80)

such that ψI(0) = ψII(0), ψ ′I(0) = ψ ′II(0), ψII(a) = ψIII(a) and ψ ′II(a) = ψ ′III(a),
and where k′ = √

2m(E − V0)/�2. Two cases can then happen. If E > V0, ψII will
consist of a superposition of two plane waves which reflect or transmit above the
barrier. In this case,

R = (k2 − k′2)2 sin2 k′a
4k2k′2 + (k2 − k′2)2 sin2 k′a

, (3.81a)

T = 4k2k′2

4k2k′2 + (k2 − k′2)2 sin2 k′a
. (3.81b)

On the contrary, if E < E0, k′ becomes complex and the arguments of the exponen-
tials in (3.80) become real. In this case, only the solution with β = 0 has physical
meaning, since it implies a gradual (along x) attenuation of the “wave”. This kind
of damped solutions are called evanescent waves [41] because they correspond to
waves which are progressively attenuated through a medium and the phenomenon is
the well-known tunnel effect or quantum tunneling. Taking this into account,

R = (k2 + κ2)2 sinh2 κa

4k2κ ′2 + (k2 + κ2)2 sinh2 κa
, (3.82a)

T = 4k2κ2

4k2κ2 + (k2 + κ2)2 sin2 κa
, (3.82b)

where κ = √
2m(V0 − E)/�2. The evanescent wave coupling phenomenon is,

however, a general property of any wave equation and can, therefore, occur in any
context where a wave equation applies (e.g., optics, acoustics, quantum mechanics
or waves on strings). These waves appear at the boundary between two media with
different wave motion properties, being more intense within one third of a wave-
length (λ = 2π/k′) from the surface of formation. In Chap. 4, this issue will be
revisited within the context of optics and electromagnetism where, for example, the
opacity index of a material or the radiation losses in waveguides can be explained
in terms of evanescent waves. It is interesting to note that, due to the leading role of
quantum mechanics in modern physics, the well-known concept of evanescent wave
coupling is being substituted in optics and electromagnetism by that of tunneling, thus
becoming very common in the literature the use of terms such as photon tunneling
or acoustic tunneling.

http://dx.doi.org/10.1007/978-3-642-18092-7_4
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3.3 Ensemble Distributions and the Density Matrix

As shown above, the wave function can be expressed either in the configuration
representation or in the momentum one by simply using a Fourier transformation.
From them, the density matrix can be obtained in each representation,

ρ̂(x, x ′) ≡ 〈x |ρ̂|x ′〉 or ˆ̃ρ(p, p′) ≡ 〈p| ˆ̃ρ|p′〉, (3.83)

respectively. The probability densities in the respective representation follow by
only considering their diagonal elements, which is equivalent to tracing ρ̂ over the
configuration or the momentum variables, respectively, i.e.,

ρ(x) ≡ ρ(x, x) = 〈x |ρ̂|x〉 or ρ̃(p) ≡ ρ̃(p, p) = 〈p| ˆ̃ρ|p〉. (3.84)

Now, the fact that ρ(x) or ρ̃(p) have an appropriate classical limit does not mean
necessarily one has a classical description. Note that in classical mechanics the
distribution of positions and momenta is described by a joint probability distribu-
tion, ρcl(x, p) and, therefore, one would desire to deal with similar joint probability
distributions in quantum mechanics (mainly when describing open quantum systems,
as will be seen in Chap. 5), i.e., a quantum probability distribution in phase space [42].
In other words, joint probability distributions, ρQ(x, p), satisfying the properties

∫
ρQ(x, p)dp = ρ(x),

∫
ρQ(x, p)dx = ρ̃(p), (3.85a)

ρQ(x, p) ≥ 0, for all (x, p). (3.85b)

In principle, one could assume ρQ can be expressed uniquely in terms of a pure
state, as ρQ(x, p) = 〈Ψ |M(x, p)|Ψ 〉, with M(x, p) being a self-adjoint operator.
However, such a ρQ cannot satisfy both properties (3.85a) and (3.85b) [43]; only
mixed states of the form ρ̂ = ∑

i wi |ψi 〉〈ψi | fulfill the requirement that the phase
space distribution only depends on the state operator ρ and not on the particular way
how it is represented. Thus, when dealing with pure states, one of the two properties
has to be “sacrificed” in order to provide a phase–space description of the quantum
system. Two possibilities are usually considered in the literature. Either one works
with the Wigner distribution [44], ρW (x, p), which satisfies (3.85a) but not (3.85b),
or with the Husimi distribution [45], ρH (x, p), which works the other way around.
Nevertheless, other quantum phase–space distribution functions can also be found
in the literature [46].

http://dx.doi.org/10.1007/978-3-642-18092-7_5
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3.3.1 The Wigner Distribution

For simplicity, consider a single particle in one dimension (though the generalization
to many particles in three dimensions is straightforward). The Wigner representation
of the density matrix or Wigner distribution is defined as

ρW (x, p) = 1

2π�

∫
〈x − s/2|ρ̂|x + s/2〉eips/�ds. (3.86)

Particularly, for a pure state described by a wave function Ψ , this expression can be
expressed as

ρW (x, p) = 1

2π�

∫
Ψ (x − s/2)Ψ ∗(x + s/2)eips/�ds. (3.87)

For example, if the state is given by a Gaussian wave packet,

Ψ (x) =
(

1

2πσ 2
0

)1/4

e−(x−x0)
2/4σ 2

0+i p0x/�, (3.88)

the associated Wigner distribution will also be a Gaussian function, but in phase
space, i.e.,

ρW (x, p) = 1

π�
e−(x−x0)

2/2σ 2
0−2σ 2

0 (p−p0)
2/�2

. (3.89)

If the system state is described by a superposition of two identical Gaussian wave
packets symmetrically centered around x = 0 (at x = ±x0), i.e.,

Ψ (x) = N

(2πσ 2
0 )

1/4

[
e−(x+x0)

2/4σ 2
0 + e−(x−x0)

2/4σ 2
0

]
, (3.90)

with N = 1/
√

2(1+ e−x2
0/2σ

2
0 ), the corresponding Wigner distribution will be

ρW (x, p) = N 2

π�
e−2σ 2

0 p2/�2
[

e−(x+x0)
2/2σ 2

0 + e−(x−x0)
2/2σ 2

0

+ 2e−x2/2σ 2
0 cos

(
2px0

�

)]
. (3.91)

This latter case is illustrated in Fig. 3.1(a), where (3.91) displays three peaks, two
around x = ±x0 and a third one in between modulating the oscillatory factor that
represents the interference of the two Gaussian wave packets. It is precisely in this
oscillatory part where the Wigner distribution reaches both positive and negative
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(a)

(b)

Fig. 3.1 a Wigner distribution function associated with the superposition of two Gaussian wave
packets (3.90). In the contour plot, the transition from green to red denotes passing from negative
to positive values of this distribution function. In the upper panel, the probability density in config-
uration space, ρ(x); in the left-hand side panel, the probability density in momentum space, ρ̃(p)
(black line), and the corresponding wave function, Ψ̃ (p) (red line). b Surface representation of the
Wigner distribution displayed in part (a)



3.3 Ensemble Distributions and the Density Matrix 97

values, as can be better appreciated in Fig. 3.1(b)—in general, whenever interference
features are present, the Wigner distribution will show negative values. It is also
remarkable that this middle, oscillating peak does not disappear as x0 increases (i.e.,
when the wave packets are far enough from each other and N → 1/

√
2), but remains,

this being a signature of the quantum coherence describing the superposition.
The probability densities in momentum space, ρ̃(p), associated with (3.88) and

(3.90) can be straightforwardly obtained from the corresponding wave functions,

Ψ̃ (p) =
(

2σ 2
0

π�2

)1/4

e−σ 2
0 (p−p0)

2/�2+i(p−p0)x0/� (3.92)

and

Ψ̃ (p) = 2N

(
2σ 2

0

π�2

)1/4

e−σ 2
0 p2/�2

cos
( px0

�

)
, (3.93)

respectively. For the particular case of the superposition of two Gaussian wave
packets, Fig. 3.1(a) shows that the values of the Wigner distribution along the axes
p = 0 or x = 0 are proportional to ρ(x) (see the upper panel in Fig. 3.1(a)) and ρ̃(p)
(see the left-hand side panel), respectively, in agreement with property (3.85a). It is
also observed that the maxima along x = 0 of the Wigner distribution correspond
to maximum values of ρ̃(p) or, equivalently, extrema of Ψ̃ (p), while the negative
minima are associated with ρ̃(p) = 0(= Ψ̃ (p)).

In these two examples, the Gaussian wave packet and the coherent superposition
fulfill

∫∫
ρW (x, p)dxdp = Tr[ρ̂] = 1, (3.94)

which can be easily shown taking into account that (3.86) satisfies (3.85a). Further-
more, ρW is always real since ρ = ρ†. However, it is also observed that ρW can take
both positive and negative values (see Fig. 3.1(b)), thus not satisfying the nonnega-
tivity property required for a state operator (see Sect. 3.2.3); only for pure Gaussian or
coherent states ρW is always positive. Because of this, Wigner distributions are some-
times referred to as quasi-probability distributions. Nevertheless, if the following
property

0 ≤ Tr[ρ̂(i)ρ̂( j)] ≤ 1 (3.95)

for two different density matrices ρ̂(i) and ρ̂( j) is considered together with the defi-
nition (3.98) below, one finds

0 ≤
∫∫

ρ2
W (x, p)dxdp ≤ 1. (3.96)
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Apart from the Wigner distribution, the Wigner representation of a general oper-
ator Â is given by

AW (x, p) =
∫
〈x − s/2| Â|x + s/2〉eips/�ds. (3.97)

In particular, for the potential and kinetic energy operators, VW (x, p) = V (x) and
KW (x, p) = K (p) = p2/2m, respectively and where x and p are dynamical vari-
ables and not operators anymore. Therefore, the Wigner representation of the Hamil-
tonian operator is just as in classical mechanics, i.e., HW (x, p) = p2/2m + V (x).
The expectation value of the dynamical variable represented by the operator Â can
also be evaluated within this representation, becoming

Ā = 〈 Â〉 =
∫∫

ρW (x, p)AW (x, p)dxdp (3.98)

when (3.33) has been used. Thus, if Â = Ĥ the average value of the system energy
is reached.

In spite of the negativeness displayed by the Wigner distribution, it is employed
not only in quantum mechanics [42], but also in optics [47], because it allows us to
connect in a very straightforward way the classical phase space with a quantum phase
space (which has some regions with “negative” probability). Actually, consider the
evolution of the Wigner distribution function, given by

∂ρW

∂t
= − p

m

∂ρW

∂q
+
∞∑

n=0

(�/2i)2n

(2n + 1)!
∂2n+1V

∂q2n+1

∂2n+qρW

∂p2n+1 = {H, ρW }M , (3.99)

where {·, ·}M is the so-called Moyal bracket [48, 49]. Given two any general functions
A and B of q and p (i.e., in phase space), these brackets are defined as

{A(q, p), B(q, p)}M ≡
2

�
A(q, p) sin

[
�

2

(←−
∂ q
−→
∂ p −←−∂ p

−→
∂ q

)]
B(q, p),

(3.100)
where the arrow over the partial derivatives indicate the term over which they act
(e.g., A

←−
∂ q B = (∂A/∂q)B). If the third and higher-order derivatives of the potential

vanish (i.e., harmonic approximations or lower order ones are considered), the equa-
tion of motion (3.99) is exactly the same as its classical counterpart for the classical
distribution function,

∂ρcl

∂t
= − p

m

∂ρcl

∂q
+ ∂V

∂q

∂ρcl

∂p
= {H, ρcl} , (3.101)

which has already appeared before in this monograph in different contexts—see, for
example, (1.56) in Sect. 1.4.2, where ρcl was denoted by f. As can be noticed, the

http://dx.doi.org/10.1007/978-3-642-18092-7_1
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passage from (3.101) to (3.99) consists only of substituting the Moyal brackets by
the Poisson ones, defined by (1.23), since in the limit �→ 0,

{A, B}M ≈ A
(←−
∂ q
−→
∂ p −←−∂ p

−→
∂ q

)
B = {A, B} . (3.102)

In this way, the Moyal brackets can be seen as a generalization of the standard Poisson
ones when the latter are “deformed” by introducing higher-order derivative terms
[50, 51]. Thus, whenever this limit satisfies, the Wigner phase–space distribution
description of quantum mechanics reduces to the classical one based on Hamilton’s
equations of motion. This is precisely the basis of numerical approaches (see
Volume 2) such as the so-called Wigner method [52], where—at a first level of
approximation—observables are evaluated from a sampling over classical trajecto-
ries distributed in phase space according to a Wigner distribution.

3.3.2 The Husimi Distribution

In the case of the Husimi distribution, the positivity is warranted and, therefore, it
acquires a probability interpretation. The idea behind the construction of this type
of distribution arises from the way how the probability density arises in config-
uration space in terms of position eigenvectors, |x〉. These vectors satisfy both
the orthonormality condition, 〈x |x ′〉 = δ(x − x ′), and the completeness relation,∫ |x〉〈x |dx = 1. The system state is then given by ρ(x) = 〈x |ρ̂|x〉—in the case of
a pure state, ρ(x) = |Ψ (x)|2. Now, due to the complementarity of the configuration
and momentum spaces, no eigenvectors of both position and momentum exist and,
therefore, the same procedure cannot be followed. Nevertheless, one can consider
instead the closest functions, namely minimum uncertainty wave packets, denoted
by |q, p〉 and expressed in configuration space as

〈x |q, p〉 =
(

1

2πs2

)1/4

e−(x−q)2/4s2+i px/�. (3.103)

These wave packets are not associated with a certain phase space point (q, p), but at
least they are localized around it with minimum dispersion in both q (�q = s) and
p (�p = �/2s). The width parameter s defines the basis set |q, p〉 and, therefore,
different basis sets can be obtained by varying it. By construction, these vectors are
not orthogonal, but form an over-complete set satisfying the completeness relation

∫
|q, p〉〈q, p|dqdp = 2π�. (3.104)

Nonetheless, note that in the limit s → 0, (3.103) approaches a position eigenvector,
while in the limit s → ∞ it approaches a momentum eigenvector. In this sense, as

http://dx.doi.org/10.1007/978-3-642-18092-7_1
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in the case of the Wigner representation, the Husimi representation also constitutes
an intermediate step between the position and momentum representations.

With all of this in mind, the Husimi distribution is defined as

ρH (q, p) = 1

2π�
〈q, p|ρ̂|q, p〉, (3.105)

which in the case of a pure state becomes

ρH (q, p) = 1

2π�
|Ψ (q, p)|2 = 1

2π�

⏐⏐⏐⏐
∫
〈q, p|x〉Ψ (x)dx

⏐⏐⏐⏐
2

. (3.106)

As can be noted from (3.106), the Husimi distribution is always positive and normal-
ized, for (3.104) ensures

∫
ρH (q, p)dqdp = 1. To some extent, the Husimi distrib-

ution can be interpreted as a Gaussian smoothing (or coarse-graining) of the Wigner
distribution with a “filter” of size larger than �—the uncertainty relation for a Husimi
distribution is (Δq)H (Δp)H ≥ �, twice larger than the bound for a usual quantum
state, ΔqΔp ≥ �/2. Actually, Husimi distributions can be expressed as the product
of two Wigner distributions,

ρH (q, p) = 1

2π�
Tr

[|q, p〉〈q, p|ρ̂] =
∫∫

ρqpW (q
′, p′)ρW (q

′, p′)dq ′dp′,
(3.107)

where ρW and ρqpW are the Wigner distributions associated with the state ρ and the
minimum uncertainty wave packet |q, p〉, respectively. Taking (3.89) into account,
the latter reads as

ρW (q
′, p′) = 1

π�
e−(q ′−q)2/2s2−2s2(p′−p)2/�2

. (3.108)

In spite of the positivity of the Husimi distribution, its momentum and position
integrals do not render the position and momentum probability distributions (3.85a),
but a Gaussian-averaging version of them,

ρ̄H (q) =
∫
ρH (q, p)dp =

∫ √
1

2πs2 e−(x−q)2/2s2 |Ψ (x)|2dx, (3.109a)

¯̃ρH (p) =
∫
ρH (q, p)dq =

∫ √
2s2

π�2 e−2s2(p′−p)2/�2 |Ψ̃ (p′)|2dp′. (3.109b)

In agreement with the statement above about the limits on s, in the limit s→ 0
(3.109a) approaches the position probability density ρ(q)= |Ψ (q)|2, while in the
limit s→∞ (3.109b) will approach the momentum probability density
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Fig. 3.2 Set of Husimi distributions from the family associated with the wave packet superposition
(3.90) and generally specified by (3.11a) and (3.11b). To compare with, at the left top and the right
bottom ρ(x) (note that the same scale is used for both x and q, since both denote a configuration
space coordinate) and ρ̃(p) are respectively displayed
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ρ̃(p) = |Ψ̃ (p)|2 (note that in those limits the prefactors inside the corresponding
integrals become δ-functions).

In the particular case of the examples given above in Sect. 3.3.1, one finds that the
Husimi distribution for the Gaussian state (3.88) is

ρH (q, p) = 1

π�

(
σ0s

σ 2
0 + s2

)
e−(q−x0)

2/2(σ 2
0+s2)e−2(p−p0)

2/(σ−2
0 +s−2)�2

, (3.110)

while the Husimi distribution associated with the superposition (3.90) is

ρH (q, p) = N 2σ0s

π�(σ 2
0 + s2)

e−2p2/(σ−2
0 +s−2)�2

{
e−(q+x0)

2/2(σ 2
0+s2)

+ e−(q−x0)
2/2(σ 2

0+s2) + 2e−(q2+x2
0 )/2(σ

2
0+s2) cos

[
2px0

�

(
s2

σ 2
0 + s2

)]}
.

(3.111)
In Fig. 3.2 it is observed a set of Husimi distributions of the family associated with the
wave packet superposition (3.90) and given generally by (3.111). More specifically,
as s increases, a gradual transition from a Husimi distribution, whose projection
along the q axis is ρ(q), to the opposite case, when s →∞, whose projection along
the p axis reproduces the momentum probability density, ρ̃(p), is patent. Contrary
to the Wigner distribution, this type of distributions is in all cases positive definite.

3.4 Feynman’s Path Integrals

Together with the wave and matrix formulations of quantum mechanics, started by
Schrödinger and Heisenberg, respectively, around the first quarter of the twentieth
century, the path integral formulation developed by Feynman in 1948 [53, 54] consti-
tutes the third great approach (based on the wave function) to quantum mechanics.
The idea behind of the path integral formulation apparently comes originally from
Dirac and it was incorporated in the second edition of his famous book [55]. This
approach has been a very important interpretational and computational tool since its
inception, being particularly used to deal with statistical problems involving many
degree-of-freedom systems in gas and condensed phases [56–58]. Its starting point
consists of expressing the formal solution to the time-dependent Schrödinger equa-
tion in the integral form

Ψ (q, t) =
∫

K [q, t; q0, t0]Ψ (q0, t0)dq0, (3.112)

where the kernel or propagator, K, connects the initial and final states—as will be
seen in Chap. 4, in the way how (3.112) is expressed, it keeps a very close relation with

http://dx.doi.org/10.1007/978-3-642-18092-7_4
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Huyghen’s principle and the so-called Huygens’ construction [7, 9] (see Sect. 4.3.1).
The propagator K also obeys Schrödinger’s equation as well as the boundary
condition

lim
t→t+0

K [q, t; q0, t0] = δ(q − q0), (3.113)

which allows us to interpret it as a time-evolved δ-function initially centered
at q0. From a classical perspective, this initial condition represents a uniform
p0-momentum distribution on the surface q = q0, the same initial ensemble
represented by the (classical) Jacobian determinant in configuration space [59]. Actu-
ally, in the classical limit, at t0, the propagator approaches the Jacobian determinant,
known as the Van Vleck determinant [60–62] within the context of the semiclas-
sical approximation (see below). Therefore, this determinant and the classical action
(which rules the interference effects) constitute the basic building block of almost
any semiclassical approximation.

In order to construct the propagator K, Feynman proceeded [53, 54] considering
the path-integral approach a way to reach quantum mechanics—though the inverse
way [57] turns out to be an elegant, alternative to derive the path-integral formalism
from quantum mechanics. Thus, consider the state of the system at t0 and t f is
described by the coordinates q0 and q f , respectively, which can be connected by
an infinity of paths, all of them satisfying the boundary conditions q0,α = q0 and
qα = q f . A probability amplitude is then associated with every individual path, as

Φα(q f , t f ) ∝ ei Sα(q f ,t f )/�, (3.114)

where Sα is given by (1.1) evaluated along the path α from ta = t0 to tb = t f . The
propagator is now obtained by summing up over all possible paths, i.e.,

K [q f , t f ; q0, t0] =
∑
α

Φα(q f , t f ), (3.115)

with the proportionality constant in (3.114) being such that (3.115) is properly
normalized. From an interpretational viewpoint, (3.115) is already helpful (for
example, it is clear from it that quantum effects arise from the interference among
the probability amplitudes associated with each path), however it is not in the form
of a path integral yet. To do so, first both space coordinates and time are discretized,
as in Fig. 3.3, and then use of the multiplicative property satisfied by the propagator
is made,

K [q f , t f ; q0, t0] =
∫

K [q f , t f ; qk, tk]K [qk, tk; q0, t0]dqk, (3.116)

where the subscript k denotes an intermediate state, such that t0 ≤ tk ≤ t f . Then,
considering the infinitesimal discreteness of every path and summing up over all
paths joining q0 with q f [53, 54], one obtains the general and standard expression

http://dx.doi.org/10.1007/978-3-642-18092-7_4
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Fig. 3.3 Discretization
process of both space and
time (polygonal trajectory)
to evaluate the propagator
(3.115). This process,
analogous to carrying out a
Riemann integral, gives rise
to the path-integral
expression (3.117) for the
propagator K

K [x f , t f ; q0, t0] =
∫

ei S[q f ,t f ;q0,t0]/� Dq, (3.117)

known as the path integral [54]. The notation Dq denotes “sum over histories” and
explicitly illustrates the physics behind this sum over all paths connecting the initial
and final states. That is, it emphasizes the fact that (within Feynman’s framework)
the evolution of a quantum system can always be understood as a combination of
classical-like paths and the superposition principle.

A critical aspect of the path integral approach to quantum mechanics comes
from the way how path integrals are solved. Most of times, the Riemann integral
is used since it displays a nice convergence no matter what intermediate point in the
intervals is selected to evaluate the corresponding approximating sums. This ideal
situation is broken when, for example, a magnetic field, derivable from a vector
potential, is included in the Hamiltonian [53, 57]. For this case, the midpoint rule
of the interval should be adopted to obtain consistent results with the Schrödinger
equation. This problem was already found in the theory of stochastic processes by
Itô and Stratonovich when discussing the Brownian motion (see Appendix B). This
midpoint rule is the choice due to Stratonovich.

Among the former applications of Feynman’s path integrals is found the so-called
semiclassical theory [63–74] (see Sect. 3.5.2), started by the earlier 1970s and further
developed in the following decades. The basic idea here is, starting from the path
integral approach, considering the classical limit, where only the paths close to the
stationary one which makes S an extremum contribute to the transition probability
obtained from the expression [63, 64]

〈Ψ (q f , t f )|e−i Ĥ(t f−t0)/�|Ψ (q0, t0)〉 ∼ ei Scl[q f ,t f ;q0,t0]/�, (3.118)

where Ĥ is the system Hamiltonian and Scl is the classical action, i.e., the value
of S when (1.1) is evaluated along the classical trajectory with boundary conditions
q0 at t0 and q f at t f . In this way, although the evolution of both the Van Vleck deter-
minant and the classical action are determined classically, due to the construction of
(3.118), which allows for interference, observables can be computed approximately
(i.e., semiclassically). This theoretical approach was initially developed to study

http://dx.doi.org/10.1007/978-3-642-18092-7_1
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both inelastic and reactive molecular collisions, and shortly after it was also adapted
[75, 76] and applied [77–81] to atom–surface scattering. Within this particular field,
the semiclassical theory resulted from an interpretation point of view advantageous
because of the classical picture of scattering phenomena it provides. However, this
theory can only be exactly applied to elastic scattering, being necessary the use
of additional approximations in the inelastic case [80, 81]. Moreover, comparisons
with other approximate quantum methods have shown [78, 79] that the semiclassical
approach only provides better results for low surface corrugation. For highly corru-
gated surfaces, a case of interest in the study of surface resonances [82], there is a
serious drawback that complicates the root search process involved in the calculation
of the (semiclassical) S-matrix: the appearance of classically chaotic dynamics [83,
84]. This makes that a large number of (chaotic) trajectories connect the initial and
final states [85].

Recently, work related to the tunnel effect within the path integral and semiclas-
sical formulations has been reviewed by Ankerhold [34].

3.5 The Semiclassical Route to Quantum Mechanics

3.5.1 The Ehrenfest Theorem

Though incoming fluxes are usually described by means of plane waves, this is only an
approximation which allows us to develop analytical treatments (e.g., the partial wave
analysis used in scattering theory). However, when describing particles (whatever
the meaning of “particle”), it is more common to consider wave packets, i.e., wave
functions which have a certain extension in the corresponding configuration space.
Accordingly, the classical limit is regarded as the dynamical regime at which the
space variations of the forces (or, equivalently, potential functions) acting on the wave
packet are relatively large in comparison with the effective extension of the latter. In
other words, if the wave packet remains relatively localized, very little influenced,
for sufficiently long times (namely, the Ehrenfest time), classical mechanics provides
a good description of quantum processes. In such cases, the wave packet displays
a classical-like behavior. For example, in bound systems, Ehrenfest’s time should
be larger than the associated classical period while, in scattering problems, this time
should be larger than the typical (classical) times involved in collisions or diffraction.

Such remarks on the classicality of quantum systems are summarized within the
so-called Ehrenfest theorem [86], which constitutes a way to obtain the time-evolution
of expectation or average values, according to

d〈 Â〉
dt
= i

�
〈[Ĥ , Â]〉 +

〈
∂ Â

∂t

〉
, (3.119)
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where Â is a quantum-mechanical operator and 〈 Â〉 denotes its expectation or average
value. Note that this expression is analogous to the classical one

d A

dt
= {H, A} + ∂A

∂t
, (3.120)

written in terms of the Poisson bracket and where A is a certain classical variable
(see Chap. 1). However, if Â is the density matrix, ρ̂, (3.120) will read as

d

dt
〈ρ̂〉 = − i

�
〈[Ĥ , ρ̂]〉, (3.121)

if ρ̂ does not depend explicitly on time, which happens for systems where probability
is conserved, i.e., for quantum systems that are closed and described by pure states.
The corresponding time evolution for open quantum systems will be discussed in
Chap. 5.

If Ĥ and ρ̂ commute, then d〈ρ̂〉/dt = 0 which is equivalent to the classical
condition (1.55), thus (3.121) resembling (1.56) or, equivalently, (1.57). However,
these classical counterparts are for the distribution function itself and not for its aver-
aged values. The passage to the classical limit just consists in finding an equation of
motion for the quantum expectation values themselves rather than having an equation
of motion relating different expectation values (d〈 Â〉/dt, 〈∂ Â/∂t〉 and 〈[Ĥ , Â]〉).
That is, if the wave packet is expected to display classical-like features, the expecta-
tion values for its position and momentum,

d〈q̂〉
dt
=

〈
∂ Ĥ

∂ p̂

〉
= 〈 p̂〉

m
, (3.122a)

d〈 p̂〉
dt
= −

〈
∂ Ĥ

∂q̂

〉
= −

〈
∂ V̂

∂ q̂

〉
, (3.122b)

should essentially behave as a classical trajectory and be described by

dq

dt
= p

m
, (3.123a)

dp

dt
= −∂V

∂q
. (3.123b)

The condition now for (3.122) to behave like their classical counterparts (3.123) is
that Δq̂ and Δ p̂ remain small during times of the order of the typical timescales
involved in the system dynamics, for this would imply 〈Ĥ(q̂, p̂, t)〉 ≈ Ĥ(〈q̂〉, 〈 p̂〉, t)
and therefore (3.122) would read as

http://dx.doi.org/10.1007/978-3-642-18092-7_1
http://dx.doi.org/10.1007/978-3-642-18092-7_5
http://dx.doi.org/10.1007/978-3-642-18092-7_1
http://dx.doi.org/10.1007/978-3-642-18092-7_1
http://dx.doi.org/10.1007/978-3-642-18092-7_1
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d〈q̂〉
dt
= ∂H(〈q̂〉, 〈 p̂〉, t)

∂〈 p̂〉 , (3.124a)

d〈 p̂〉
dt
= −∂H(〈q̂〉, 〈 p̂〉, t)

∂〈q̂〉 , (3.124b)

which are much closer to (3.123). In order to find the condition leading to this result,
let us define the force vector operator,

F̂(q̂) = −∂ Ĥ

∂q̂
, (3.125)

representing the forcing acting on the quantum particle. The Taylor series expansion
of this operator around 〈q〉(t) is given by

F̂(q̂) =F̂(〈q̂〉)+ (q̂ − 〈q̂〉) · ∇ F̂
⏐⏐⏐

q̂=〈q̂〉

+ 1

2

∑
i, j

(q̂i − 〈q̂i 〉)(q̂ j − 〈q̂ j 〉) ∂
2 F̂

∂q̂i∂ q̂ j

⏐⏐⏐⏐⏐⏐
q̂=〈q̂〉

+ · · · (3.126)

Substituting now (3.126) into (3.122b) yields

d〈 p̂〉
dt
� F̂(〈q̂〉)+ 1

2

∑
i, j

Δi j
∂2 F̂

∂qi∂q j

⏐⏐⏐⏐⏐⏐
q̂=〈q̂〉

, (3.127)

whereΔi j ≡ 〈q̂i q̂ j 〉 − 〈q̂i 〉〈q̂ j 〉. If Δi j ≈ σ 2, where σ is the effective size or width
of the wave packet, the nonclassical term in (3.127) can be neglected and the center
of the wave packet will only be affected by the first term of the Taylor series (3.126),
thus displaying a classical-like motion. A more quantitative criterion is

∣∣∣∣σ 2 ∂
3V/∂qi∂q j∂qk

∂V/∂ql

∣∣∣∣� 1, (3.128)

i.e., whenever the spreading of the wave packet remains sufficiently small in compar-
ison with the spatial variations of the potential acting on it, the wave packet will
behave like a classical particle and its evolution will be describable by means of the
classical laws. Note that although (3.128) is independent of �, it is required that the
wave packet be sufficiently narrow and potentials vary slowly with q. On the other
hand, also notice that the criterion (3.128) is not valid for potentials which are poly-
nomials of second or less degree, for (3.126) does not provide any correcting term.
In such cases, 〈q̂〉 and 〈 p̂〉 coincide with their classical counterparts at any time and,
therefore, it is not possible to speak about an Ehrenfest-like classical limit, but other
criteria (if any) have to be chosen.
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3.5.2 The JWKB Approximation

The roots of semiclassical mechanics lie in the old quantum theory [33, 34, 87]. It
represents a short wavelength link between classical and quantum mechanics, similar
to that found between wave optics and geometric optics (see Sect. 7.3). It is known
as the JWKB or WKB approximation (as it is more generally known), developed
by Jeffreys [88], Wentzel [89], Kramers [90] and Brillouin [91, 92]. Jeffreys was
a mathematician who developed a general method of approximating solutions to
linear second-order differential equations. On the other hand, Wentzel, Kramers
and Brillouin, apparently unaware of Jeffreys’ work, used a similar method for the
resolution of Schrödinger equation, discovered two years later.

As it can be inferred from Sect. 3.4, a good understanding of the emerge of the
classical limit within Feynman’s approach also constitutes a key point to derive a
semiclassical expression for the propagator. As seen before, every path contributes
to the transition probability with the same probability (|Φα|2 = 1) independently
of whether it corresponds to a classical trajectory or not. On the other hand, in the
classical limit one expects that the corresponding action Sα becomes very large in
comparison to �, this translating into very fast oscillations in the waves associated
with every path (see (3.114)). Interference among waves associated with paths far
from the classical trajectory will be destructive and they will barely contribute to
the propagator, while the phase difference for paths in the vicinity of the classical
trajectory will be more important (due to the stationarity of S) and interferences will
be constructive. Thus, if q0 and q are joined by a single classical trajectory, because
of stationarity to first order the phase associated with the paths closer to the classical
trajectory will be Scl for all of them, thus becoming the global phase factor for the
propagator. Meanwhile, second-order phase differences give a Gaussian integral,
whose modulus can be interpreted as a measure of how many neighboring paths
contribute to the transition probability in the classical limit.

The derivation of the semiclassical propagator can be carried out by means of the
JWKB approximation, using the one-dimensional, time-independent JWKB ansatz
[33, 93]

ψ(q) = ρ1/2(q)eiφ(q)/�. (3.129)

This approximation is also called the primitive semiclassical approximation [94],
where ρ is the probability density and φ a real-valued phase. Since (3.129) is
assumed to be a formal solution of the time-independent Schrödinger equation at an
energy E,

∂2ψ(q)

∂q2 + 4π2

λ2(q)
ψ(q) = 0, (3.130)

where λ(q) ≡ 2π�/
√

2m[E − V (q)] is a local or effective de Broglie wavelength,
after substituting (3.129) into (3.130) is found

http://dx.doi.org/10.1007/978-3-642-18092-7_7
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∇ · J = 0, (3.131a)

p2

2m
= (∇φ)2

2m
− �

2

2m

∇2ρ1/2

ρ1/2 , (3.131b)

where p = �/λ, J = ρ(∇φ)/m and the second term in the right-hand side of
(3.131b) is the so-called quantum potential (see Chap. 6),

Q P ≡ − �
2

2m

∇2ρ1/2

ρ1/2 . (3.132)

As can be noticed, (3.131a) tells us that the quantum flow is stationary (time
independent)—since ρ does not depend on time, there cannot be any source or sink
of quantum flow and therefore the quantum probability current density has to be
stationary. On the other hand, according to (3.131b) the local quantum momentum
field depends on the variations of the phase and also on another component with a
purely quantum origin. In classical mechanics, the momentum depends only on the
action through its gradient, so if the classical limit is defined when φ ≈ Scl, then

p2

2m
≈ (∇φ)2

2m
�

⏐⏐⏐⏐− �
2

2m

∇2ρ1/2

ρ1/2

⏐⏐⏐⏐ . (3.133)

This criterion for classicality is similar to the standard one that the JWKB approxi-
mation consists of dropping terms containing �

2 in (3.131b) [93].
From (3.133), if it holds,φ then corresponds to the classical action evaluated along

a trajectory q(t) at an energy E. Therefore, a solution for the continuity equation
(3.131a) along this trajectory can be readily found,

ρ(q) =
∣∣∣∣ p(q0)

p(q)

∣∣∣∣ ρ(q0), (3.134)

where q0 is the initial condition for q(t) and ρ(q0) is the density distribution eval-
uated at that point. Putting these results together one reaches the well-known semi-
classical solution

ψsc ∝
√
λ(q)ei Ssc(q)/�, (3.135)

valid whenever the potential varies slowly over many wavelengths. This can be seen
from (3.133), which can be recast as

∣∣∣∣ V ′(q)
V ′′′(q)

∣∣∣∣� λ2(q)

4
(3.136)

taking into account (3.134) and that V ′′ � 0 to assure the smoothness of the potential
[95] (primes indicate the order of the derivatives with respect to q). This condition

http://dx.doi.org/10.1007/978-3-642-18092-7_6
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of classicality is the same as the one found through Ehrenfest’s theorem, given by
(3.128), if it is assumed the width of the wave packet (σ ) is of the order of λ(q)/2.

For potentials that are polynomials of degree less than or equal to two the condition
(3.136) is always satisfied (λ(q) � ∞) provided one does not approach the clas-
sical turning points, where p = 0 and the semiclassical approximation breaks down
(λ→∞).Actually, this is not only for this kind of potentials, but in general. There-
fore, the semiclassical wave function ψsc is only of local validity. Nevertheless, this
problem can be overcome by finding a uniform approximation to the wave function
[94, 96, 97], i.e., expressing it as a combination of primitive semiclassical forms with
validity in each region of phase space. This can be carried out by using a technique
developed by Maslov [96] that takes advantage of the possibility to represent the wave
function in both the configuration and the momentum representations. According to
this technique, one computes the semiclassical wave function from the initial point
to another one close to the turning point where the wave function is still valid. From
this new point to its inverted (i.e., the same point but after passing through the turning
point) the evaluation of the wave function is made in the momentum representation,
where there is no breaking down. Once in the inverted point, the configuration repre-
sentation is used again. This process, repeated for any turning point that appears until
reaching the final point q f , leads to a good estimation of the wave function.

The step to switch from the configuration to the momentum representation is
carried out by making use of the stationary phase method, well-known in geometric
optics [98] (this method is also known as the steepest descent or saddle point method).
This method consists of approximating the phase in multidimensional integrals like

I =
∫

A(q) eiΥ (q)/�dq (3.137)

by their expansion around a point q̃ to second order in δqn ≡ |qn − q̃n|, i.e.,

Υ (q) ≈ Υ (q̃)+ 1

2

∂2Υ

∂qk∂ql

⏐⏐⏐⏐
q=q̃

δqkδql , (3.138)

and the amplitude by its value at q̃ if it varies slower than the phase over many
oscillations of the latter. Taking this into account and integrating by using the optical
Fresnel-integral formula, (3.137) becomes

I = (2π�)N/2

|Δ(M)|1/2 A(q̃)eiΥ (q̃)/�+iπsgn (M)/4, (3.139)

where Δ(M) and sgn(M) ≡ Δ(M)/|Δ(M)| represent, respectively, the deter-
minant and the signature (positive minus negative eigenvalues) of the matrix M,
defined as

M ≡ ∂2Υ (q)

∂qk∂ql

⏐⏐⏐⏐
q=q̃

. (3.140)
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IfΔ(M) = 0, the stationary phase approximation fails; the next order in the expan-
sion of Υ (q) is then considered. This problem, equivalent to solving the Schrödinger
equation for a linear potential (the linearized approximation of V (q)), involves the
use of Airy functions [97] and allows the semiclassical wave function to penetrate
into the classical forbidden region.

So far a time-independent analysis of semiclassical wave functions has been devel-
oped. However, it can also be extended to time-dependent problems by considering
the ansatz

Ψ (q, t) = ρ1/2(q, t)eiΦ(q,t)/�. (3.141)

Proceeding as before, (3.131) become

∂ρ

∂t
+∇ · J = 0, (3.142a)

∂Φ

∂t
+ (∇Φ)

2

2m
+ V + Q P = 0, (3.142b)

respectively, where now J = ρ(∇�)/m. That is, (3.142a) is the continuity equa-
tion for the conservation of the probability density, while (3.142b) is a quantum
Hamilton–Jacobi equation, where Q P is now time-dependent due to the depen-
dence on time of ρ. As before, the semiclassical approximation also arises when
neglecting Q P in (3.142b), according to (3.133). This makes (3.142b) to become the
classical Hamilton–Jacobi equation andΦ ≈ Ssc Hamilton’s principal function [13]
discussed in Chap. 1. Then, a solution of (3.142a) along the trajectory q(t) can be
found, reading as

ρ(q(t), t) = |Δ(J )| ρ(q0, t0), (3.143)

where

J ≡ ∂q0

∂q
(3.144)

is the Jacobian matrix.
At sufficiently small times, Φ remains single-valued and the semiclassical wave

function (3.141) can be then written as

Ψsc(q, t) = |Δ(J )|1/2 ei Ssc[q,t;q0,t0]/� Ψ (q0, t0). (3.145)

However, as time goes on, the wave function (3.145) might no longer be valid since
Φ is not necessarily unique because more than one trajectory with different values
of Ssc may connect q0 with q(t). These points belong to caustics [85], which are the

http://dx.doi.org/10.1007/978-3-642-18092-7_1
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projection onto configuration space of all those points for which the Jacobian deter-
minant, Δ(J ), vanishes (thus the amplitude of (3.145) becoming infinity). Under
this condition, one can overcome the problem by finding a uniform approximation
near the caustic, which is analogous to finding it close to the turning point in time-
independent problems. In scattering problems, for example, this procedure consists
in considering separately: the incident part of the trajectories as well as the outgoing
part of those trajectories that do not reach the caustic; the scattered part of the trajec-
tories after “touching” the caustic; and the part corresponding to the singular points
on the caustic. This leads to a division of the configuration space in nonoverlapping
domains where the globally valid approximate solution is well defined on the bound-
aries of such domains and corresponds to the different piecewise local approximate
solutions in every domain.

Unless one needs to evaluate the semiclassical expression of the wave func-
tion on a point of a caustic, it is not necessary to consider the momentum repre-
sentation. However, it is important to take into account that since there might be
different trajectories connecting q0 with q at t, one has to consider the evaluation
of Δ(Jα) and S(α)sc for each particular trajectory α. On the other hand, since the
orientation of the Lagrangian manifold (q,∇Φ) at t will vary with respect to the
initial manifold, the eigenvalues of J will also change their sign each time that the
corresponding trajectory touches a caustic. This is expressed by writing the Jacobian
determinant as

Δ(Jα) = e−iπμα(q(t),q0) |Δ(Jα)| , (3.146)

whereμα(q(t), q0) is the Maslov index associated with the trajectoryα, which counts
the number of times that the sign of the Jacobian determinant changes along such a
trajectory when going from q0 to q(t). Taking all these remarks into account, one
obtains the correct form for the evolved semiclassical wave function,

Ψsc(q, t) =
∫ {∑

α

|Δ(Jα)|1/2ei S(α)sc [q,t;q0,t0]/�−iπμα(q(t),qi )/2

}
Ψ (q0, t0)dq0,

(3.147)
which, as can be seen, includes the contribution from all possible trajectories that
connect any point q0 with q(t).

The expression between the curly brackets in (3.147) is precisely the expression
for the propagator that maps the initial ansatz Ψ (q0, t0) into Ψsc(q, t). Observe,
however, that there is a small subtlety in this expression: the propagator in (3.147)
does not satisfy the boundary condition (3.113). This is because this propagator has
been obtained under the assumption that particles have a well-defined momentum at q,
what clearly contradicts the fact that for q = q0 its amplitude is infinity and its phase
is not well-defined—and therefore particles can have any momentum. Notice that this
is also connected to the fact that the calculation of the semiclassical wave function
has been carried out by predetermining a certain trajectory q(t). In order to obtain
the correct expression for the propagator, one has to consider the expression between
the curly brackets in (3.147) and the one corresponding to the short-time evolution
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of the propagator [97]. Putting both expressions together results in the semiclassical
or Van Vleck propagator:

Ksc(q, t) =
∑
α

1

(2π i�)N/2 |Δ(Vα)|1/2 ei S(α)sc [q,t;q0,t0]/�−iπμα(q(t),q0)/2, (3.148)

where

Vα ≡ ∂p0

∂q
= −∂

2S(α)sc

∂q∂q0
. (3.149)

Two important points about the use of the semiclassical propagator are worth
stressing. First, the use of the semiclassical approximation requires the search for
all classical trajectories connecting q0 with q(t); this constitutes a difficult task.
Indeed, under the presence of chaotic dynamics, although several alternatives can be
followed, the problem is apparently intractable. One of the techniques that is receiving
much attention, specially within the chemical physics community, is the initial value
representation (IVR) of the semiclassical propagator [34, 63, 64, 99–103]. The best
known IVR propagator is the so-called Hermann–Kluk propagator although a variety
of alternative IVR propagation schemes have been proposed [34]. Second, the semi-
classical propagator (3.149) satisfies the property (3.116) only approximately. Thus,
the multidimensional integral

Ksc[q f , t f ; q0, t0] ≈
∫

Ksc[q f , t f ; qk, tk]Ksc[qk, tk; q0, t0]dqk (3.150)

can only be evaluated out approximately by using the stationary phase method inte-
grating over regions near points qk where the phase is stationary. Classical trajec-
tories will contribute whenever the final momentum from q0 to qk and the initial
momentum from qk to q f coincide.

Quantum tunneling and escape processes, in general, have been some of the main
problems studied in the semiclassical approximation. Two powerful thermodynamics
methods (the bounce and the instanton methods) are also widely used to perform
thermal averages over tunneling rates in a dissipationless regime within the energy
and time domains. Recently, this theoretical scheme has been extended to density
matrices by a unified semiclassical approach [34].

When dealing with genuine quantum processes such as, for example, barrier or
dynamical tunneling, interference and diffraction and the zero point motion, a clas-
sical analysis has to be carried out with great care. The time-evolution of many
molecular processes involving elastic and inelastic collisions, reactive scattering,
dissociation problems or diabatic transitions, to just cite a few of them, is usually
analyzed by running classical trajectories where some sort of quantization at the
beginning (initial conditions) or at the end (statistical treatments) or in between (hope
probabilities), or even all of them, need to be implemented. Furthermore, complex
classical trajectories are also very often performed. This gave rise to a large variety of
methods which were applied with great success. One of the main reasons why such
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“quasi-classical” methods were used is the high dimensionality of the process under
consideration where quantum mechanical treatments become prohibitive. Nowa-
days, a very important number of “hybrid” (combination of classical and quantum
elements) methods more sophisticated can be found in the literature. To cite all of
them with their advantages and disadvantages is a huge effort out of the scope of this
monograph.

Finally, a very active field of research is also the role played by periodic orbits and,
in general, classically chaotic systems in building wave functions. An introduction
to this field can be found in [104].

3.5.3 The Eikonal Approach

Semiclassical approximations, like the JWKB discussed above, are often inspired
from optics. In this regard, another interesting semiclassical approach is the so-called
eikonal approximation [14, 98, 105, 106]. This approach readily applies to systems
with many degrees of freedom, e.g., elastic atom–surface scattering assuming simple
corrugated hard-wall potentials [107], or atomic and molecular collisions including
any kind of potential function [108, 109].

As before, the starting point here is also the ansatz

Ψ (q) = χ(q)ei S(q)/�, (3.151)

though the functions χ and S are now complex and real, respectively (actually, in
general, χ could be a complex column matrix) and q represents the position of the
particle in three dimensions. After substitution of (3.151) into the time-independent
Schrödinger equation,

[
1

2m
(−i�∇ + ∇S)2 + V − E

]
χ = 0. (3.152)

From this expression, one can define the local total energy of the system, as

E(q) ≡ Re

[
Ψ ∗(q)ĤΨ (q)
|Ψ (q)|2

]

= (∇S)2

2m
+ V − �

2

4m|χ |2
(
χ∗∇2χ + χ∇2χ∗

)− i�(∇S)

4m|χ |2
(
χ∗∇χ − χ∇χ∗) .

(3.153)
Although S is not determined at this stage, proceeding as in classical mechanics, the
momentum is defined again as

p ≡ ∇S, (3.154)

which allows to rewrite the energy (3.153) as
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E = p2

2m
+ Ṽ (q,p), (3.155)

and where Ṽ is the so-called effective quantum potential,

Ṽ ≡ V − �
2

4m|χ |2
(
χ∗∇2χ + χ∇2χ∗

)
− i�p

4m|χ |2
(
χ∗∇χ − χ∇χ∗) . (3.156)

since terms containing � are included, apart from the V potential. This allows to
express again the system Hamiltonian as

ˆ̃H(q,p) = p2

2m
+ Ṽ (q,p), (3.157)

which is similar to a classical Hamiltonian, with q and p being the system variables.
Taking advantage of the Hamiltonian-like form acquired by the initial time-

independent Schrödinger equation after considering the ansatz (3.151) and assuming
now that both q and p depend parametrically on t, the evolution of the latter are
assumed to follow Hamilton’s equation of motion,

dq
dt
= p

m
+ ∂ Ṽ

∂p
, (3.158a)

dp
dt
= −∂ Ṽ

∂q
. (3.158b)

The corresponding trajectories are not classical since the effective quantum potential
rules the underlying dynamics. From this type of quantum trajectories, one can then
calculate S and the transition integrals by projection on the final states [109] by

T f =
∫

eip f .q/�V (q)χ(q)ei S(q)/�dq. (3.159)

Nonetheless, note that one has to evaluate χ , which can be done by substituting
(3.154) into (3.152). Due to the explicit dependence of Ṽ on χ and S, this type
of calculation is quite involved. In the limit of high energy collisions, however,
(3.158a) and (3.158b) can be solved in an easier manner. Observe that in this limit,
the (effective) de Broglie wavelength, λ = 2π�/|p|, becomes small and one can then
take into account the conditions leading to the optical eikonal approximation [14].
That is, the spatial variations of χ are slower than those of S, and therefore

|∇2χ | �
∣∣∣p
�
∇χ

∣∣∣�
∣∣∣∣
(p

�

)2
χ

∣∣∣∣ . (3.160)

Under these conditions, the effective quantum potential, Ṽ , reduces to the classical
one, V, and (3.158a) and (3.158b) become the usual classical equations of motion.
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Chapter 4
Optics and Quantum Mechanics

4.1 Introduction

Wave theory can be considered one of the most important mathematical models
in physics. It has been successfully applied to describe many different physical
phenomena and processes [1, 2]. Hence it is not strange to find different branches of
physics where the same or similar concepts are considered. This is precisely the case
of wave optics1 and quantum mechanics, where historically theoretical treatments
and concepts developed within the former were later on considered to explain some
phenomena described by the latter [3, 4]. Actually, the fact that both formulations—
indeed, the conception of light and matter—have followed a somewhat similar and,
to some extent, intertwined evolution cannot be neglected. As it would happen with
quantum mechanics (see Chap. 3), the wave theory of light found many troubles in
being accepted since the former wave-based models proposed by Huygens [5] in
1678. By that time, there was already a strongly settled theory: Newton’s corpuscle
theory of light [6], based on assuming that light consists of different kinds of tiny
particles which carry the colors and propagate in straight lines. Newton’s scientific
authority at the moment made that only a few scientists, like Euler [7–9] and Franklin
[8, 9], dared by the end of the eighteenth century to reject this viewpoint and adhered
to Huygens’ conception.

Newton’s approach was based on the everyday (direct) experience of light. This
leads in a natural way to the concept of rays propagating along straight lines, reflecting
or refracting according to very simple and well-defined geometrical laws, i.e., to
geometric optics (see Chap. 7). Without appealing to wave aspects of light, he was
also able to successfully describe phenomena such as the formation of the so-called
Newton’s rings—an interference phenomenon formerly discovered by Hooke in 1664

1 The terms wave optics, physical optics and undulatory optics are usually considered in the
literature to denote the same: the part of optics described by the wave equation derived from
Maxwell’s equations of electromagnetism. Throughout this monograph, the first term will be used
preferably, since it allows a more direct conceptual connection with Schrödinger’s wave mechanics
or quantum mechanics.
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[10]—, or birefringence—first described by Erasmus Bartholin in 1669 [11, 12], who
observed it in calcite crystals. However, there are also optical processes where the
shape of the obstacles met by light during its propagation plays an important role,
giving rise not only to interference, but to diffraction phenomena. These phenomena
cannot be tackled by means of geometric optics: according to this theory rays should
“bend”, which can only occur in nonhomogeneous media (those with a varying
refractive index), as it can be inferred from Fermat’s principle (see Chap. 7). In
this sense, it is worth mentioning the crucial experiment carried out by Arago to
prove in 1818 Poisson’s hypothesis: if Fresnel’s wave theory of light was correct,
a light spot should be observed at the centre of the geometric shadow caused by
a circular obstacle [13, 14]—this effect being first observed by Maraldi in 1723
[14, 15]. Contrary to Poisson, a Newtonian himself, the spot was observed and the
wave theory of light succeeded. This experiment and the failure of Newton’s theory in
explaining diffraction thus led to the acceptance and rise of Huygens’ theory during
the nineteenth century by the hand of Fresnel, Arago, Foucault, Young, Fraunhofer,
or Kirkchoff, among others, reaching its climax by the end of the century with
Maxwell’s unified formulation of electromagnetism, which constitutes the core of
wave optics. Of course, also by the end of the nineteenth century, just when everything
seemed to be very well established in physics, new physical effects appeared, such as
the photoelectric effect or the discrete levels observed in absorption spectra, which
would bring some troubles to the Maxwellian electromagnetism and would lead to
considering again Newton’s former idea of light constituted by particles.

4.2 Maxwell’s Equations and the Wave Equation

In wave optics, light is conceived as a perturbation or wave caused in vacuum or a
material medium by an electromagnetic field—as well as an effect of the propagation
of electromagnetic energy through those media. This particular type of electromag-
netic radiation is characterized by wavelengths (λ) ranging from 380 to 750 nm or,
equivalently, frequencies (ν) between 400 and 790 THz (remember that λν = c,
where c denotes the speed of light in vacuum), within the so-called visible region of
the electromagnetic spectrum. The way how light propagates or interacts with matter
is described by the well-known Maxwell equations of (classical) electromagnetism
[16, 17],

∇ · E = ρe

ε0
, (4.1a)

∇ ·H = 0, (4.1b)

∇ × E = −μ0
∂H
∂t
, (4.1c)

∇ ×H = Je + ε0
∂E
∂t
, (4.1d)

http://dx.doi.org/10.1007/978-3-642-18092-7_7
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which are applicable to any type of electromagnetic radiation, regardless of its wave-
length or frequency. In other words, this set of differential equations allows us to
establish the link between the behavior of the electromagnetic field—specified by
its electric (E) and magnetic (H) components—in space and time with the causes or
sources that produce and modify it (electric charge densities, ρe, current densities,
Je and some boundary conditions). Locally, in space regions with absence of electric
and/or magnetic sources, (4.1) can also be recast in a more compact form as two
wave equations,

∂2E
∂t2 − c2∇2E = 0, (4.2a)

∂2H
∂t2 − c2∇2H = 0. (4.2b)

These equations make more apparent the connection between the electromagnetic
field and its wave description. In this case, the particular form of the electromagnetic
field will be determined by the boundaries imposed on it as well as the properties of
the medium through which it propagates or it is confined.

The solutions of (4.2) are therefore electromagnetic waves, where E and H are not
independent one another due to Maxwell’s equations (4.1c) and (4.1d). The simplest
solutions to (4.2) are the harmonic solutions,2 which are characterized by a periodic
time-dependence with frequencyω (ω = 2πν). These are also called monochromatic
fields because of their dependence on a single frequency. In complex form [16, 17],
these solutions read as

E(r, t) = E0(r)e−iωt , H(r, t) = H0(r)e−iωt , (4.3)

where E0(r) and H0(r) are in general also complex fields with magnitude and phase
that change with position—the actual electric and magnetic fields are then obtained
from their respective components (4.3) by taking their real parts. Together with the
corresponding boundary conditions (at a given time), these fields obey the time-
independent partial differential equations

∇2E0 + k2E0 = 0, (4.4a)

∇2H0 + k2H0 = 0, (4.4b)

where k = ω/c is the associated wave vector. Plane waves traveling along the
k-direction (k = kn, with n being a unitary vector pointing along the propagation
direction) are simple solutions to these equations, for which the modulus of both E0

2 Of course, other solutions can also be devised. It is sufficient to assume a particular form (initial
condition) for E and H satisfying the corresponding boundaries at a given time and then solving
(4.2), which will give us the time-evolution of these fields.
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and H0 is constant and their associated phase is given by eik·r. With this, the fields
(4.3) read as

E(r, t) = E0ei(k·r−ωt)ue, H(r, t) = H0ei(k·r−ωt)uh, (4.5)

where ue and uh denote the oscillation direction of these fields, respectively.
By considering Maxwell’s equations (4.2), one readily finds that ue · uh =ue ·
n = uh · n = 0 as well as the relationship E0/H0 = μ0ω/k = √μ0/ε0.

In many situations of physical interest, both the electric and magnetic fields
can be described in terms of a scalar field, Ψ (r, t), from which they are derived
[16, 17]. In particular, the electromagnetic field will arise from the solution Ψ and
its first derivatives, but also their components fit this scalar description. This scalar
field satisfies the scalar wave equation

∇2Ψ − 1

c2

∂2Ψ

∂t2 = 0. (4.6)

Assuming that the space and time parts of Ψ are separable, as before, and then
using again the method of separation of variables, (4.6) gives rise to the well-known
Helmholtz equation [1, 2],

∇2ψ + k2ψ = 0, (4.7)

where ψ is time-independent. This general equation of the wave theory allows us to
establish a very important link between the solutions found in wave optics and those
from quantum mechanics [3, 4] (see Sect. 4.6). Nevertheless, Helmholtz’s equation
is much more general and appears in the description of any time-independent wave
phenomenon, regardless of its nature.

4.3 Interference and Diffraction

4.3.1 The Huygens–Fresnel Principle

Any partial differential equation which does not contain any nonlinear term of its solu-
tion, such as the wave or the Helmholtz equations, gives rise to solutions satisfying
an interesting (and useful) mathematical property: they can be linearly combined in
order to provide us with other alternative solutions of the same equation. This simple
mathematical idea is known as the superposition principle (see Chap. 1). From a
practical viewpoint, this principle is very important to obtain general solutions to the
wave equation, but it is also the mechanism that allows us to explain the observation of
interference and diffraction phenomena. Although there is not a fundamental, phys-
ical distinction between these two phenomena, they will be considered as different

http://dx.doi.org/10.1007/978-3-642-18092-7_1
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throughout this monograph for pedagogical purposes. The criterion followed is the
same found in different textbooks on optics [18]. Thus, here interference will refer
to any situation where several wavefronts coming from different, separate sources
coalesce on a space region; when the number of such wavefronts becomes so large
that no spatial distinction between two different sources is possible, the phenomenon
will be considered to be diffraction. Accordingly, note that interference patterns will
only depend on the overlapping of waves, while diffraction patterns will manifest a
strong dependence on the relationship between the wavelength of the incoming wave
and the (relative) size of the diffracting object. In this way, the pattern originated by
a periodic grating can be considered as an interference pattern when the emphasis is
made on the overlapping of the different (diffracted) outgoing wavefronts, while it
is a diffraction pattern if the emphasis is put on the particular features of the pattern
in relation to the grating properties.

Bearing in mind such a distinction, consider now the issue of the “physical”
grounds of the superposition principle, namely the Huygens–Fresnel principle. By
the end of the seventeenth century, Huygens proposed [5] a mechanism to explain
the propagation of light which consisted of assuming it behaves like the waves on a
water surface. Accordingly, he established the following principle [14]:

Every point on a propagating wavefront serves as the source of spherical secondary wavelets,
such that the wavefront at some later time is the envelope of these wavelets.

Moreover, “if the propagating wave has a frequency ν, and is transmitted through
the medium at a speed v, then the secondary wavelets have the same frequency and
speed”. By plotting sections of circles or spheres (secondary wavelets) of radius vt
centered at different points along a wavefront, and then tracing the envelope common
to all of them, one obtains the new wavefront. This very simple method, called the
Huygens’ construction (see also Sects. 1.2.1 and 3.4), allows us to describe the evolu-
tion of the wave across a medium, explaining the straight-line propagation of light as
well as its reflection, refraction and passage through birefringent media. This method,
however, has an important drawback: it neglects backward-traveling contributions,
only considering the forward-traveling ones [19]. At the level of description consid-
ered by Huygens, i.e., the onwards propagation of wavefronts, this did not constitute
a major issue. Actually, his model does not present any trace of the principle of
wave interference and, therefore, cannot account for diffraction phenomena. Now, it
is clear that two opposite traveling wavefronts have to be considered within a more
refined model, which is precisely the result arising from the wave equation. As will
be seen below, the refinement necessary to account for these effects was introduced
later on by Fresnel and Kirchoff.

According to the previous discussion, Huygens’ principle only focusses on the part
of the secondary wavelets common to the enveloping wavefront, without providing
any description of what happens near the borders of diffracting objects or how the
shape of the latter influences the shape of the emerging wavefronts. Consider, for
example, an aperture of widthw illuminated by a wave with wavelengthλ.According
to Huygens’ principle, the emerging wavefront will look the same regardless of the
relative size between w and λ, except for its spatial extension, which is limited

http://dx.doi.org/10.1007/978-3-642-18092-7_1
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by the size of the aperture, w. The region beyond the (geometric) projections of
the obstacle with respect to the propagation direction of the wave is the so-called
geometric shadow region, which is always “dark” according to Huygens’ principle.
However, waves “bend over” around objects, this effect being more important as
the size of the object becomes closer to the wavelength of the incoming wave (see,
for example, the experiments in ripple tanks displayed in [20]). In other words,
the formation of shadows depends on the wavelength of the incoming wave—a tree
gives rise to shadows when illuminated by light, but it does not produce such shadows
for radiofrequencies. Hence it is possible to observe light in regions of geometric
shadow, with the well-known Arago-Poisson spot constituting the most remarkable
experimental fact illustrating this effect [14]. The concept of geometric shadow is
only strictly valid in the limit λ→ 0.

In order to overcome this problem, in the nineteenth century Fresnel added a
postulate to Huygens’ principle introducing the concept of interference between
secondary wavelets as follows [14]:

Every unobstructed point of a wavefront, at a given instant, serves as a source of spherical
secondary wavelets (with the same frequency as that of the primary wave). The amplitude of
the optical field at any point beyond is the superposition of all these wavelets (considering
their amplitudes and relative phases).

This generalization of Huygens’ principle, which allows us to describe diffraction
phenomena, is known as the Huygens–Fresnel principle. This principle constitutes
the core of the scalar theory of light, as shown by Kirchhoff, who proved that it is a
consequence of the scalar differential wave equation.

In a more formal fashion, the Huygens–Fresnel principle can be formulated as
follows. For the sake of simplicity and without loss of generality, consider a point-
like source radiating at point Ps in vacuum [1]. The outgoing solutions to the corre-
sponding wave equation are given by spherical oscillatory waves,

Ψ (rs, t) = A

rs
ei(krs−ωt), (4.8)

where rs denotes the radial distance from Ps to any point in space. Now, consider there
is a closed surfaceΣ between Ps and another point Po where the effect of the source
after the wave has met the surface is going to be measured. The surfaceΣ coincides
with a wavefront of radius rs and centered at Ps . The value of the perturbation at
Po is denoted by Ψo. Following the Huygens–Fresnel principle, Ψo arises from the
interference of the secondary wavelets originated at each element of area dΣ (onΣ)
when Ψ reaches the surface Σ. In order to determine the contribution from each of
these elements at Po, it can be reasonably argued that they will be proportional to:

1. The so-called obliquity factor (also called transmission function when dealing
with apertures), f (θs, θo), which accounts for the angular dependence of the
secondary wavelets (on θs and θo).

2. The value of (4.8) at PΣ, where the wavefront emerging from Ps, at a distance
rs, meets the surface element dΣ at a time t ′.
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3. The spherical factor associated with each (point-like) secondary source, also given
by (4.8) but evaluated at ro (the distance between PΣ and Po) and t − t ′ (the time
elapsed to cover the distance ro).

4. The area element dΣ.

That is,

dΨo ∝ f (θs, θo)︸ ︷︷ ︸
(1)

(
A

rs
ei(krs−ωt ′)

)
︸ ︷︷ ︸

(2)

(
1

ro
ei[kro−ω(t−t ′)]

)
︸ ︷︷ ︸

(3)

dΣ︸︷︷︸
(4)

= K f (θs, θo)
A

rsro
ei[(k(rs+ro)−ωt]dΣ, (4.9)

where K is a proportionality constant with the dimensions of inverse length and then
proportional to 1/λ. Therefore, the (total) wave amplitude reaching Po is obtained
by integrating (4.9) over the region of the surfaceΣ (hereby denoted asΔΣ) which
is unobstructed,

Ψo = K Ae−iωt
∫
ΔΣ

f (θs, θo)
eik(rs+ro)

rsro
dΣ. (4.10)

In other words, this is equivalent to integrating over the whole space, but taking into
account the boundary conditions imposed on the transmission by the presence of a
possible obstacle.

In general, the obliquity factor is not known and therefore (4.10) cannot be directly
solved. However, some analytical results can be obtained when considering harmonic
solutions to the Helmholtz equation together with Green’s theorem [1, 16]. In partic-
ular, this procedure leads to the Helmholtz–Kirchhoff integral theorem, which gives
us Ψ0(t) as an exact time-harmonic scalar wave. By applying the so-called Kirchhoff
boundary conditions [1, 16], (4.10) acquires the form

Ψo(t) = − i A

λ

∫
ΔΣ

[(
cos θs + cos θ0

2

)
+ iλ

4π

(
cos θs

rs
+ cos θ0

r0

)]

× ei[k(rs+ro)−ωt]

rsro
dΣ, (4.11)

where K = −i/λ, which is in agreement with the hypothesis above about the
wavelength dependence of K . One can further proceed and assume the limit
rs, ro � λ, i.e., both the source and observation points at relatively far compared
with the light wavelength. In this case, the second term in the integrand of (4.11)
vanishes and

Ψo = K Ae−iωt
∫
ΔΣ

(
cos θs + cos θo

2

)
eik(rs+ro)

rsro
dΣ, (4.12)
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with f (θs, θo) = (cos θs+cos θo)/2. This expression is known as Fresnel–Kirchhoff
diffraction formula. Although there are no full analytic solutions for (4.12) due to
the complexity involved in the calculation along Σ, some approximations can be
obtained in two limiting cases:

• Near-field or Fresnel diffraction.
• Far-field or Fraunhofer diffraction.

For example, consider an aperture of width w. If zo denotes the distance between
the center of the aperture and the position of Po perpendicular with respect to the
aperture, then the Fresnel approximation is applied for z0 � w and the Fraunhofer
one for z0 � w2/λ (see below in Sect. 4.3.4); for z0 � λ/2, (4.12) cannot be used,
but (4.11). In any case, as can be seen, the integral is strongly dependent on the
phase factor inside the integrand, which will give rise to constructive and destructive
interference and therefore to the typical diffraction fringe patterns.

4.3.2 Interference Phenomena

When two or more wavefronts coalesce on a space region, a series of alternate dark
and light fringes appear when the coalescing wavefronts are coherent, i.e., all of
them have the same or nearly the same wavelength. From now on, this process will
be referred to as interference and to the associated pattern as the interference pattern.
The dark fringes arise when the wavefronts cancel among themselves, while light
fringes appear where their combination is constructive. In the latter case, the intensity
observed can be greater than the intensities associated with each separated wavefront.

In order to provide a more quantitative view of interference phenomena, consider
two point-like sources, S1 and S2, coherently emitting monochromatic, linearly polar-
ized light in vacuum with wavelength λ. They are separated a distance a � λ.

Moreover, let us assume that Po in this case is so far from S1 and S2 that the incident
wavefronts from each source can be assumed as plane waves. With these assumptions,
the corresponding electric fields can be expressed as

E1(r, t) = E1,0ei(k1·r−ωt+φ1), (4.13a)
E2(r, t) = E2,0ei(k2·r−ωt+φ2). (4.13b)

These fields are both solutions of (4.2a), with |k1| = |k2| = k = ω/c, though
pointing along different space directions (k̂1 = k1/|k1| and k̂2 = k2/|k2|). Due to
their monochromaticity, the space-dependent part of these fields also satisfies the
Helmholtz equation (4.7). To observe interference, (4.13) are now substituted into
the time-averaged expression for the intensity,

I = 1

2
Re {〈E2〉}, (4.14)

which yields



4.3 Interference and Diffraction 129

I = 1

2
Re

{〈E2〉} = 1

2
Re

{〈E2
1〉

}+ 1

2
Re

{〈E2
2〉

}+ Re
{〈E1 · E2〉

}

= 1

2
E2

1,0 +
1

2
E2

2,0 + E1,0 · E2,0 cos δ, (4.15)

where E1,0 = |E1,0| and

δ = Δk · r +Δφ = (k1 − k2) · r + φ1 − φ2. (4.16)

The first two contributions in (4.15) represent the intensity of each separate electric
field at Po (I1 and I2), while the third one (I12) is the interference term.

As it can be inferred from (4.16), interference depends on three factors: the direc-
tion of both fields through the scalar product k̂1 · k̂2, the dephasing associated with
the path difference Δk · r, and the initial phase difference Δφ. If both fields are
perpendicular, i.e., k̂1 · k̂2 = 0, the interference term vanishes and the total intensity
at Po is given by the sum of the partial intensities, I = I1 + I2, thus satisfying the
law of addition of intensities. On the other hand, when the sources are so far from
Po that the fields can be assumed as parallel, k̂1 · k̂2 = 1 and therefore

I = I1 + I2 + 2
√

I1 I2 cos δ. (4.17)

Interference thus depends on the relative position of Po with respect to the sources
and the initial phase of the fields. Its maximum is reached when δ = ±2nπ (with
n = 0, 1, 2, . . .), since

Imax = I1 + I2 + 2
√

I1 I2 = 1

2
(E1,0 + E2,0)

2. (4.18)

In this case, both fields (waves) are in phase and there is total constructive
interference; for any δ such that 1> cos δ > 0, interference is still constructive but
not total, since the waves are partly out of phase and Imax > I > I1+ I2. The opposite
case is total destructive interference, which is reached when the fields are totally out
of phase or in opposite phase, δ = ±(2n + 1)π, leading to

Imin = I1 + I2 − 2
√

I1 I2 = 1

2
(E1,0 − E2,0)

2. (4.19)

If the phase difference is not totally opposite, there is partial destructive interfer-
ence and I1 + I2> I > Imin. The intermediate case between total constructive and
destructive interference, I = I1 + I2, is reached for δ = ±(2n + 1)π/2, which
is a similar situation to having perpendicular fields. For example, consider that
E1,0 = E2,0. Then, I1 = I2 = I0 and (4.17) reduces to

I = 4I0 cos2 δ/2. (4.20)

In this particular case, the maximum value of the intensity is four times larger
(Imax= 4I0) than the intensity of each separated field, while the minimum value
just consists of the total suppression of the intensity (Imin = 0) by destructive inter-
ference.
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4.3.3 Young’s Two-Slit Experiment

When speaking about interference, Young’s two-slit experiment has to be mentioned.
Not only it was crucial in the development of wave optics, but also for quantum
mechanics, about 100 years later than the former. The reason why this experiment
has become so famous relies on the fact that, though very simple, it contains the
essence of the wave nature of both light and matter. In order to display such features,
consider a simple system of three screens, one (S1) with a slit that produces a narrow
wave or beam; another (S2) containing the two slits (a1 and a2), which gives rise to the
splitting of the incoming beam into two (outgoing) ones; and, finally, the third screen
(S3), at a large enough distance L from S2, is used to scan the pattern formed with the
interference of the two beams. Unlike the case of interference between two different
wavefronts analyzed before, here the interference is due to the recombination of a
wavefront previously separated (coherently): the incoming wavefront is split up by
means of S2 and then recombined again, thus originating an interference pattern by
self-interference (light coming from the same source interferes with itself).

Consider the thickness of the screens is negligible and the slits are very narrow
along the x-direction and very large along the y-direction (perpendicular to this
page), so that the outgoing waves can be assumed to be cylindrical wavefronts. Due
to cylindrical symmetry, the problem can then be reduced to the X Z -plane. The slit
at S1 acts like the source—obviously, there is a light source behind. If this slit is
centered at x = 0 and the source radiates homogeneously, there is radial symmetry
and the phase δ depends only on the path difference, i.e., δ = k1 · r1 − k2 · r2 =
−k(r2 − r1), where r1 and r2 are the distances from a1 and a2 to Po, respectively,
and |k1| = |k2| = k = 2π/λ because the outgoing wavefronts are coherent. The
observation angles from a1 and a2 are then

sin θ1 = r − r1

d/2
, sin θ2 = r2 − r

d/2
, (4.21)

respectively, where r is the distance from the center between the two slits to Po, and
d is the inter-slit distance. Assuming x 
 L , where x is the position of Po along the
x-axis,

sin θ1 ≈ tan θ1 = x

L
, sin θ2 ≈ tan θ2 = x + d/2

L
. (4.22)

Combining now the relations (4.21) and (4.22), we find

r2 − r1 ≈ xd

L
+ d2

4L
≈ xd

L
, (4.23)

where the assumption d 
 x 
 L has been considered in the last step. From (4.23),
the phase difference reads as

δ(x) = −k(r2 − r1) ≈ −2πdx

λL
, (4.24)
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from which one infers that the separation between two consecutive points with the
same intensity is

Δx = x1 − x2 = λL

d
. (4.25)

This result indicates that the spacing between the dark and light fringes of the inter-
ference pattern is constant, with the fringes being parallel to the y-axis. Moreover, by
equating (4.24) to 2nπ, total constructive interference will happen for those points
such that their path difference, r2 − r1, is an integer number of wavelengths, while
it will be destructive if it corresponds to a half integer.

Here, it is assumed that the distance L between S3 and S2 has to be very large
compared with the distance x between Po and the z-axis. Within this approximation,
the phase of any elementary wave reaching S3 can be assumed to be a linear function
of the coordinates defining the observation plane (i.e., a plane wave), as it can be
inferred from (4.24). As will be seen below, this is known as the far field or Fraunhofer
approximation within the context of diffraction.

4.3.4 Fresnel and Fraunhofer Diffraction

When looking at the edge of a knife illuminated by sunlight, it is possible to
observe a spot of light just as if there was a notch on the edge. What is happening,
indeed, is that light is getting diffracting, i.e., light rays are “bending” around
the obstacle rather than passing straight ahead. In order to describe diffraction
phenomena, of which this is just a common example, the relationship between
the wavelength of the incoming wavefront and the size of the obstacles that
it meets has to be considered. In general, there are no analytical solutions for
diffraction problems, as mentioned at the end of Sect. 4.3.1. However, there are
two limits which allow us to obtain some approximated solutions, as mentioned
above: near-field or Fresnel diffraction and far-field or Fraunhofer diffraction.
In particular, for far-field diffraction is very useful Babinet’s principle which states
that the diffraction patterns from two complementary objects are identical (by
complementary objects is meant that the opaque parts of one correspond to the
transparent parts of the other).

The limit of Fresnel diffraction is defined when the distances from the obstacle
to the source and to the observation point are both relatively small compared to the
size of such an obstacle (or the space variations of its particular shape). In this way,
changes of the wavefront phase near the obstacle can be assumed to be a quadratic
perturbation of the coordinates on the obstacle. This leads to relatively complicated
analytical treatments: any displacement of the observation point means considering
a new integration region on the obstacle, since the curvature of the wavefronts cannot
be neglected.
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In order to briefly analyze this type of diffraction with some more detail, consider
an aperture, as in Fig. 4.1. Within this approximation, not all points on the aperture
contribute equally to the intensity at Po, but only those located in a neighborhood
of the intersection between the plane containing the aperture and the straight line
joining the source with Po. The intersection point is called the stationary point and
the generating straight line is the ray described by geometric optics (see Chap. 7). In
this way, the contributions to the intensity at Po come from points on the aperture
such that their associated rays vary slightly with respect to the geometric optics ray—
this does not mean the intensity at Po will coincide exactly with the value predicted
by geometric optics.3 Thus, consider the Huygens–Fresnel integral (4.12) expressed
[18] as

Ψo = iα

λ

∫
ΔΣ

f (x, y)
e−ik·(rs+ro)

rsro
dxdy, (4.26)

where rs and ro are, respectively, the distances from the source and the observer to
a point P on the aperture near the stationary point P̄, as seen in Fig. 4.1. Taking
into account the stationarity condition (i.e., the distances from the source and the
observer to the aperture, zs and zo, are much larger than the distance between P and
Ps), these distances can be expressed as

rs =
√
(xs − x)2 + (ys − y)2 + z2

s ≈ zs + (xs − x)2 + (ys − y)2

2zs
, (4.27a)

ro =
√
(x − xo)2 + (y − yo)2 + z2

o ≈ zo + (x − xo)
2 + (y − yo)

2

2zo
, (4.27b)

which explicitly show the quadratic dependence on the aperture coordinates charac-
teristic of Fresnel diffraction. Replacing rs and ro in the denominator of (4.26) by zs

and zo, respectively, does not affect much the amplitudes of the spherical waves due
to the small variations in the corresponding paths with respect to the stationary one.
However, the same does not hold for the phase factor: small variations in the phase
may lead to dramatic changes when going from one point on the aperture to another.
This phase factor is proportional to

rs+ro ≈ zs+zo+
[
(xs − x)2

2zs
+ (x − xo)

2

2zo

]
+

[
(ys − y)2

2zs
+ (y − yo)

2

2zo

]
. (4.28)

This change makes the resulting integral very complicated analytically. So, consider
the parameters

3 In quantum mechanics, this is somehow similar to what happens within Feynman’s path-integral
formulation [21] (see Sect. 3.4). In this case, the geometric optics ray is substituted by a classical
(stationary) trajectory and the secondary wavelets are replaced by imaginary exponential functions,
with their argument being the classical action evaluated along the corresponding varied (with respect
to the classical trajectory) paths. As one approaches the classical limit, mainly contributions in a
neighborhood of the classical trajectories are relevant.

http://dx.doi.org/10.1007/978-3-642-18092-7_7
http://dx.doi.org/10.1007/978-3-642-18092-7_3
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Fig. 4.1 Scheme employed
to analyze the Fresnel
diffraction produced by an
aperture. The dashed line
denotes the stationary path,
namely the optical ray,
between a source point Ps
and the point Po where the
effect is observed

xo

xs

x

y
ys

yo

zs

zo

P

Ps

Po

Σ

ro

rs P

ρ = zs zo

zo + zs
, x̄ = zs xo + zoxs

zs + zo
, ȳ = zs yo + zo ys

zs + zo
, (4.29)

where x̄ and ȳ are the coordinates of the stationary point P̄. After substitution of
these parameters into (4.28),

rs+ro ≈ zs+ zo+
[
(xo − xs)

2 + (yo − ys)
2

2(zs + zo)

]
+

[
(x − x̄)2 + (y − ȳ)2

2ρ

]
. (4.30)

Also, expressing the distance between Ps and Po as

L = zo + zs + (xo − xs)
2 + (yo − ys)

2

2(zs + zo)
, (4.31)

one obtains zs zo ≈ ρL . Taking into account these relation, (4.26) can be finally
expressed as

Ψo = iα

λρL
e−ikL

∫
ΔΣ

f (x, y)e−ik[(x−x̄)2+(y−ȳ)2]/2ρdxdy. (4.32)

According to this expression, the wave at Po is the spherical wave e−ikL/L that would
be observed without the aperture. However, due to the presence of the aperture, both
the amplitude and phase of this wave are modulated by the integral in (4.32), which
contains a phase depending quadratically on the aperture coordinates.

If Po is progressively moved further away from the aperture, a gradual, smooth
variation of the diffraction pattern is observed until reaching a certain distance.
Beyond this distance, the features of the corresponding pattern remain stable, i.e.,
independent of the distance to the diffracting object. This is the limit of the Fraunhofer
diffraction, where the dominant term in the Huygens–Fresnel integral is the linear
one. Nevertheless, once the Fraunhofer region is reached (i.e., the space region where
Fraunhofer diffraction takes place), in principle Fresnel-like patterns can be recovered
by decreasing the wavelength of the incident wave and, in the limit case λ→ 0, the
patterns corresponding to the geometric optics are obtained. Quantitative studies of
Fraunhofer diffraction are thus based on two assumptions:
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1. The distances considered as well as the size of the obstacle are large enough with
respect to the light wavelength.

2. The obstacle angular size, when observed from either Ps or Po, is relatively small.
This is the so-called paraxial approximation.

These assumptions allow us to consider (locally) the wave detected at Po as a plane
wave.

Making use of the paraxial approximation for the incident wave, consider an
aperture which, as in Fig. 4.2, is illuminated by a plane wave parallel to the aperture.
Instead of (4.26), only

Ψo = iα

λ

∫
ΔΣ

f (x, y)
e−ik·ro

ro
dxdy (4.33)

needs to be evaluated. Here, as before,

ro =
√
(x − xo)2 + (y − yo)2 + z2

o (4.34)

describes the distance between the point P on the aperture and Po. Equation (4.33)
can be expressed as

Ψo = iα

λ
e−ik·r′o

∫
ΔΣ

f (x, y)
e−ik·(ro−r′o)

ro
dxdy, (4.35)

where

r ′o =
√

x2
o + y2

o + z2
o (4.36)

is the distance from the center of the aperture to P0. As seen in Fig. 4.2, r = r′o− ro.

Since Po is very far from the aperture, the angle ϕ between r′o and ro is negligible
and, therefore,

r =
√

r ′o2 + r2
o − 2r ′oro cosϕ

≈ r ′o − ro = r ′o
2 − r2

o

r ′o + ro
= 2(xxo + yyo)− (x2 + y2)

r ′o + ro
, (4.37)

and

k|r ′o − ro| 
 kr ′o. (4.38)

This condition implies the Huygens–Fresnel integral does not vanish, ensuring that
all Huygens secondary wavelets produced between the center of the aperture and the
position denoted by r have similar phases. Thus, contributing constructively to the
interference at Po (i.e., with nonzero amplitude).
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Fig. 4.2 Scheme employed
to analyze the Fraunhofer
diffraction produced by an
aperture. Within the
Fraunhofer limit, the optical
ray essentially coincides with
the line joining P and Po

xo

x

y

yo
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P

Po

Σ r’o

ro

Using the relation

1

r ′0 + ro
= 1

2r ′o

(
1+ ro − r ′o

2r ′o

)−1

(4.39)

as well as (4.38), (4.37) can be expressed as

r ≈
(

xxo + yyo

r ′o
− x2 + y2

2r ′o

) (
1− r ′o − ro

2r ′o

)−1

. (4.40)

According to (4.38), the second factor of (4.40) has to be approximately 1, which
indicates the aperture is relatively small when seen from Po. Substituting (4.40) into
(4.35) yields

Ψo = i Ae−ik·r′o
λr ′o

∫
ΔΣ

f (x, y)eik(xxo+yyo)/r ′o−ik(x2+y2)/2r ′o dxdy, (4.41)

where A is the amplitude of the plane wave irradiated by the aperture. In (4.41),
the phase depends linearly on the Po coordinates and quadratically on the aperture
coordinates. However, since Po is assumed to be far away, this second, quadratic
contribution can be neglected provided the condition

r ′o �
x2 + y2

4πλ
∼ d2

4πλ
(4.42)

satisfies, where d is some measure of the area covered by the aperture. This condition,
namely the far-field criterion, defines a lower bound or distance, L R, after which the
far-field or Fraunhofer approximation starts to be valid.

In the phase factor of the integrand in (4.41), xo/r ′o = cos θx and yo/r ′o = cos θy

are the directional cosines defining the point Po with respect to the geometrical center
of the aperture. Thus, by defining the space frequencies

κx = −2π

λ
cos θx = −2π

λ
sin θ x

o , κy = −2π

λ
cos θy = −2π

λ
sin θ y

o , (4.43)



136 4 Optics and Quantum Mechanics

along these directions or with respect to the normal, (4.41) can be alternatively
expressed as

Ψo(κx , κy) = i Ae−ik·r′o
λr ′o

∫
ΔΣ

f (x, y)e−i(κx x+κy y)dxdy. (4.44)

According to our conventional interpretation of the Huygens–Fresnel integral, the
diffracted wave (4.44) can be understood as a coherent superposition of plane waves
leaving the aperture along the directions marked by the directional cosines, whose
contributions are modulated by f (x, y). However, (4.44) can also be interpreted as
a two-dimensional Fourier transform of the aperture transmission function. In other
words, a Fraunhofer pattern is simply the space-frequency spectrum associated with
the obstacle (or, equivalently, its transmission function).

4.3.5 Diffraction by Gratings

A diffracting grating is a periodic array consisting of N identical and equally space
diffracting elements, where diffraction can occur either by transmission through
or reflection from each one of such elements. The crystal structure of solids is
an example of diffracting grating. By analyzing the Fraunhofer diffraction pattern
formed when a beam of X-rays passes through the material (in terms of the X-rays
wavelength), one can determine the structure of the solid, namely the lattice struc-
ture, and the distribution of its constituents (atoms or molecules) within the lattice
sites or unit cells. Of course, something similar can be done with slits gratings: by
illuminating the grating with light, one can obtain information about the number of
slits per length unit, their width and any imperfection. In this case, the unit cell is
called the period of the grating.

As seen in the previous Section, Fraunhofer diffraction patterns can be understood
as the Fourier transform of the obliquity factor associated with the grating. In the
case of periodic structures, this gives rise to a very interesting and important result.
Consider a one-dimensional grating consisting of N identical slits. If the transmission
function of one of these slits is f (x ′) in the local coordinate x ′ of the slit, the
transmission function for a slit centered around a position xk (with respect to some
fixed position along the grating) can be expressed as

f (x − xk) =
∫
δ(x ′ − xk) f (x − x ′)dx ′. (4.45)

The total transmission function for the full grating can be then given as

F(x) =
N∑

k=1

wk f (x − xk) =
∫ (

N∑
k=1

wkδ(x
′ − xk)

)
f (x − x ′)dx ′, (4.46)
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where wk is the weight (in general, a complex number) with which the kth slit
contributes to the diffraction pattern. Expression (4.46) can be written as a convolu-
tion function F(x) = [g∗ f ](x), where g refers to the sum of δ-functions in (4.46).
According to (4.44), the associated Fraunhofer diffraction pattern is given by the
Fourier transform of (4.46),

Ψ (κx ) =
∫

F(x)e−iκx x dx . (4.47)

In virtue of the convolution theorem [22], (4.47) can be written as the product of the
Fourier transforms of the convoluted functions in (4.46),

Ψ (κx ) = F{ f }F{g} = Ψslit(κx )

N∑
k=1

wke−iκx xk , (4.48)

where F denotes the Fourier transform of the function between the square brackets
and

Ψslit ∼
∫

f (x)e−iκx x dx (4.49)

is the Fraunhofer diffraction amplitude associated with one of the slits. Equation
(4.48) formally summarizes the so-called array theorem [23], which states:

The field distribution of Fraunhofer diffraction from an array of similarly oriented, identical
apertures is the product of the field distribution of Fraunhofer diffraction from any one of
the apertures with the Fourier transform of the set of delta functions distributed in the same
manner (random or otherwise) as the apertures of the array.

Accordingly, the first term in (4.48) can be associated with a pure diffraction process
(diffraction by an aperture), for it provides information about the diffractive properties
of the slits and therefore modulates the total diffraction pattern. The second term,
however, is related to a pure interference process involving N identical point-like
sources. Because the interference pattern (i.e., the interference fringes) depends on
how the position and weight of the slits within the array, this term is called the array
factor, grating function or form factor. By playing around with positions and weights
one can vary the transmission performance of the grating, which can be optimized
in order to achieve some desirable properties—this is well known in antenna theory
[24], where the array can be steered (change the direction of maximum radiation or
reception) by changing the weights. On the other hand, in the fields of condensed
matter physics, solid state physics or crystallography the array factor is known as
the structure factor and describes how a material scatters an incident beam of, for
example, X-rays, electrons, neutrons or rare-gas atoms. Meanwhile, the weights wk

are the equivalent to the atomic form factor or atomic scattering factor, which is the
particular way how each atom of the unit cell responds to the incident beam.

An application of the array theorem to the particular case of a Ronchi grating—a
slit array where the distance between two consecutive slits is equal to their width—
will be seen in more detail in Volume 2 in the case of matter waves.
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4.4 Quantization in Bound Optical Systems: Waveguides

When light crosses the boundary that separates two media with different refractive
indices, it is partly refracted at the boundary surface and partly reflected. This is
well-known from geometric optics, where it is explained in terms of rays of light
(see Chap. 7), although the more rigorous explanation is obtained from Maxwell’s
equations. Refraction is described by the Snell or Snell–Descartes law, which states
that the ratio of the sines of the incidence (θi ) and refraction (θr ) angles is equal to
the ratio of the speed of light in the two media. Since the speed of light in a medium
can be expressed as v = c/n, where n is the medium refractive index, this law can
also be expressed in its more well-known form

n1 sin θ1 = n2 sin θ2. (4.50)

As it can be inferred from this expression, if n1 > n2 (i.e., the second medium is
less optically dense than the former), as the incidence angle θ1 increases, there is a
“critical” value, namely the critical angle, after which there is no refraction, but all
light is reflected back into the first medium. The critical angle, for which θ2 = π/2,
is given by the relation

θc = (sin)−1
(

n2

n1

)
. (4.51)

Whenever θ1 > θc, one can observe the so-called total internal reflection phenom-
enon. Optical fibers and waveguides constitute well-known applications of this
phenomenon. As is well-known, nowadays optical fibers are highly involved in our
everyday life due to their properties to transmit information over longer distances
and at higher bandwidths than other forms of communications, allowing signal
traveling with less losses, being immune to electromagnetic interference, or carrying
images through very narrow channels. However, the guidance of light by refraction
was first demonstrated long ago by Colladon [25] and Babinet [26] in 1842. Later
on Tyndall [27, 28] explained the phenomenon in terms of total internal reflection
for light transmitted within a stream of water (this is the so-called Tyndall effect).

In order to understand how an optical fiber works at a basic level, consider a light
ray incident on an end of a fiber with refractive index n f , which is higher than the
refractive index of the surrounding medium, ns . The critical angle leading to total
internal refraction inside the fiber is θc = (sin)−1(ns/n f ). According to (4.50), this
means that the maximum incidence angle ensuring that a ray penetrating into the
fiber will remain inside it is given by

sin θmax =
√

n2
f − n2

s

ns
. (4.52)

This angle defines the so-called acceptance cone: any ray with incidence angle θi

such that |θi | ≤ θmax will keep propagating along the fiber. The distance or path

http://dx.doi.org/10.1007/978-3-642-18092-7_7
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length, �, traveled by the ray bouncing back and forth along the fiber is then given
by

� = L

cos θ f
= n f L√

n2
f − n2

s sin2 θs

, (4.53)

where L is the fiber length.
To avoid any leakage of light through frustrated total internal reflection (see

Sect. 4.5) or when a large number of fibers are packed very close, it is common to
cover the guiding material with a thin layer of another material with lower refractive
index (but still higher than the refractive index of the surrounding medium). The
layer is called the cladding and the enshrouded material is the core, both being parts
of the same fiber. In this case, instead of (4.52), the maximum angle of incidence is
given by

sin θmax =
√

n2
f − n2

c

ns
, (4.54)

where nc is the refractive index of the cladding. The quantity ns sin θmax, given by
(4.54), is called the numerical aperture and its square gives us a measure of the
light-gathering power of the system, i.e., the amount of incident light that can be
transmitted through the guide by total internal reflection. This is related to the fact
that, depending on the launch angle into the fiber and the core diameter, there can
be a myriad of different paths by which energy can propagate along the fiber core.
This is the case of multimode fibers. When the core is very narrow, only one ray can
travel parallel to the central axis, this being the single-mode fibers.

Up to now, a ray-based description of optical fibers has been considered. However,
the notion of modes propagating inside them leads us back to the wave conception
of light and the generalized concept of waveguide, i.e., a physical structure that
guides electromagnetic waves (optical fibers guide light in the visible region of the
electromagnetic spectrum). As happens with optical fibers, although the technology
based on waveguides is very common nowadays, the first waveguide was proposed
in 1893 by Thomson [29] and experimentally verified in 1894 by Lodge [30]. The
mathematical analysis of the propagating modes within a hollow cylinder was first
performed in 1897 by Lord Rayleigh [31]. This analysis starts with the vector wave
equations (4.2) for the electric and magnetic fields, seeking for non-plane-wave
solutions fitting the boundary conditions prescribed by the shape of the waveguide.
Moreover, these solutions are required to satisfy Gauss’ law (4.1a) with ρe = 0 (i.e.,
∇ · E = 0) inside the waveguide. Solving analytically the vector wave equations
(4.2) is relatively difficult, so it is more effective to consider the scalar wave equation
(4.7). If û is a fixed-direction unit vector and Ψ (r, t) is a solution of (4.7) with the
corresponding boundary conditions, the vector field ûΨ (r, t)will be a solution of the
vector wave equation, for û commutes with the derivative operators ∇2 and ∂2/∂t2.

In terms of the electric field, the two only possible (non redundant) solutions which
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satisfy the vanishing divergence condition [4] are

E ∼ ∇ × (ûΨ ), (4.55a)

E′ ∼ ∇ × ∇ × (ûΨ ). (4.55b)

Any linear combination of these two solutions is sufficient to provide a general solu-
tion for the vector wave equation (4.2a). Moreover, due to the relationship between
the electric and magnetic fields through Maxwell’s equations, H ∼ ∇ ×E, note that
if one of these represents the electric field, the other one will be proportional to the
magnetic field.

Consider a time-harmonic scalar field of frequency ω traveling parallel to the
waveguide axis, which will be assumed to be oriented along the z-direction. The
wave scalar field can be described as

Ψ (r, t) = φ(x, y)ei(kz z−ωt), (4.56)

where the cylindrical symmetry of the problem allows us to assume û = k is along the
z-direction. If this solution is substituted into (4.55a), E has vanishing z-component
(Ez = 0), while the z-component of its associated H field (proportional to (4.55b),
according to Maxwell’s equations) is a function of the Laplacian of φ, ∇2φ. If
this Laplacian vanishes, then both electric and magnetic fields are orthogonal or
transverse to the propagation direction. The corresponding wave is called transverse
electromagnetic (TEM) wave (or mode). However, in the general case, if ∇2φ �= 0
and therefore Bz �= 0, the solutions are called as transverse electric (TE) waves or
H -waves, because only the electric field is transverse to the propagation direction
(while the magnetic field propagates in all directions). In other words, the electric
field is confined in the waveguide cross-section plane. On the other hand, similarly
(4.55a) can be associated with the magnetic field, obtaining analogous results. Thus,
the case of TEM waves arises again for∇2φ = 0,while in the general case∇2φ �= 0
(Ez �= 0) only the magnetic field is transverse to the propagation direction (now it
is this field the one confined in the waveguide cross-section plane). These are called
transverse magnetic (TM) waves or E-waves. Of course, general solutions can also
be obtained by considering superpositions of TE and TM waves.

The problem now consists of finding the function φ(x, y). By introducing (4.56)
into the scalar wave equation (4.7), it can be seen that φ satisfies the two-dimensional
Helmholtz equation,

∇2⊥φ + k2
cφ = 0, (4.57)

with the appropriate boundary conditions, where

∇2⊥ =
∂2

∂x2 +
∂2

∂y2 =
1

r

∂

∂r

(
r
∂

∂r

)
+ 1

r2

∂2

∂θ2 = · · · (4.58)

is defined as the two-dimensional transverse Laplacian operator (∇2 ≡ ∇2⊥ + ∂2/∂z2)
and
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k2
c =

ω2

c2 − k2
z , (4.59)

which results after applying the second time and z-dependent derivatives on Ψ.
Equation (4.57) will render discrete or quantified values for kc, which will depend
on the boundaries (shape and size) of the waveguide cross section, and will lead to
discrete values or modes for the electric and magnetic fields inside the waveguide.
Equation (4.59) is a dispersion relation, since it gives the relationship between the
wave number kz (or wavelength λ = 2π/kz) of the wave propagating inside the
waveguide to the frequency ω of this wave. Taking this into account, if (4.59) is
rewritten as

k2
z =

ω2

c2 − k2
c , (4.60)

note that for ω < ckc the wave attenuates and dies out exponentially; this is called
an evanescent wave (see Sect. 4.5). Thus, in order to have waves propagating along
the waveguide, their frequency has to be greater than the cutoff frequency,

ωc = ckc. (4.61)

Relation (4.60) can be alternatively expressed in terms of a cutoff wavelength, as

λg = λ0√
1− (λ0/λc)2

, (4.62)

where λg = 2π/kz is the wavelength of the bounded wave traveling down the
waveguide, λ0 = 2πc/ω is the wavelength of a plane wave of frequency ω traveling
in vacuum, and λc = 2π/kc is a parameter determined by the shape and size of the
waveguide cross-section.

As an example, consider a waveguide with rectangular cross-section, with
dimensions a and b along the x and y directions, respectively. After setting up the
appropriate boundary conditions,

φ(x, y) = A cos(kx x) cos(ky y), (4.63)

where kx = lπ/a and ky = mπ/b, with l,m = 0, 1, 2, . . . , satisfy the constraint
k2

x + k2
y = k2

c . Taking this into account, the (l,m)-mode cutoff frequency is

ωc = πc

√(
l

a

)2

+
(m

b

)2
(4.64)

and the cutoff wavelength,

λc = 1√
(l/2a)2 + (m/2b)2

. (4.65)
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According to (4.65), for a TE mode either l or m can be zero, but not both at the
same time; for a TM mode it can be shown that both l and m must be greater than
zero in order to ensure non-vanishing solutions.

According to this description, given the size of a waveguide, there is always neces-
sarily a particular mode of lowest cutoff frequency, such that waveguide propagation
below this cutoff will not be possible (except for the case of evanescent waves). Above
this cutoff and below the cutoff frequency corresponding to the second lowest mode,
only one mode can propagate down the waveguide. This lowest mode is known as
the dominant mode. Waveguides with a size such that only one mode can propa-
gate at a given frequency are called dominant-mode waveguides (for that frequency),
as happens with single-mode optical fibers, which are prepared in such a way that
the core can only support one propagating mode. If the size is larger and several
modes can propagate, the waveguide is called oversized. This is the case of multi-
mode optical fibers, for example. Dominant-mode waveguides have the advantage
that small discontinuities do not convert energy to other modes in an uncontrolled
manner, thus enabling the bending or twisting of the waveguide without inducing
reflections provided the deformation takes place gradually relative to a wavelength.
Otherwise coupling terms may appear in the corresponding scalar equation between
the different directions, which leads to the internal exchange of energy between
modes and then to the passage from one mode to another.

4.5 Evanescent Waves and Optical Tunneling

As mentioned in the previous Section, total internal reflection causes the reflection
of light when it reaches a medium with smaller refractive index at an incidence
angle larger than the critical angle. However, although no energy transmits through
the second medium, an evanescent wave [32] with an exponentially damped ampli-
tude (or intensity) with the distance from the boundary surface at which it was
formed appears (i.e., on average, no energy is transmitted along the direction perpen-
dicular to the boundary surface). Evanescent waves arise from any kind of wave
equation, thus being independent of the kind of wave considered in the description
(waves propagating in strings or membranes, sound waves, electromagnetic waves
or quantum-probability waves). They form at the boundary between two media with
different properties regarding the wave motion, being more intense within one-third
of the wavelength from the boundary, where they appear to travel along the boundary
between the two media.

To understand the appearance of evanescent waves, consider that the wave vector
of the wave transmitted to a medium 2 is given by

k2 = k2 sin(θ2)x̂ + k2 cos(θ2)ẑ. (4.66)

As seen in Sect. 4.4, if n1 > n2, for angles larger than the critical one, sin(θ2) =
(n1/n2) sin(θ1) > 1. Therefore, cos(θ2) becomes a complex number which can be
expressed as



4.5 Evanescent Waves and Optical Tunneling 143

cos(θ2) = i

√(
n1

n2

)2

sin2(θ1)− 1. (4.67)

If the transmitted electric field, for example, is given by a harmonic plane wave,
E2 = E0 exp[i(k2 · r − ωt)], then

E2 = E0e−κzei(kx−ωt), (4.68)

where

κ = k2| cos(θ2)| = k0

√
n2

1 sin2(θ1)− n2
2 (4.69)

is the attenuation constant and

k = k2 sin(θ2) = k0n1 sin(θ1) (4.70)

is the propagation constant (here, v2
prop = c/n2 = ω/k2 and k0 = ω/c). Physically,

the damping undergone by the transmitted wave arises as a consequence from the
fact that electric and magnetic fields cannot be discontinuous at a boundary surface,
which would be the case if there was no evanescent wave. This is the direct analog
of the exponentially decaying wave functions in quantum mechanics: because the
wave function and its first derivative cannot be discontinuous at the turning point
of a potential, the solution inside the potential has to be an exponentially decaying
function. In electromagnetism, the attenuation constant depends on the refractive
index of the second medium; in quantum mechanics, it depends on the effective
energy of the particle. Thus, a certain relationship can already be established between
optical refractive indices and quantum particle energies.

It is clear that a damping of the wave occurs due to the presence of the second
medium, with smaller refractive index. The penetration distance, i.e., the effective
distance that a light ray can pursue before getting totally damped, can be defined in
terms of the inverse of the attenuation constant, � ∼ 1/κ. Thus, if the second medium
is “sandwiched” between two media with the same refractive index n1 (or, at least,
similar and larger than n2) and separated a distance of the order of � or smaller, there
should be an emerging wave exiting through the third medium. This phenomenon is
called frustrated total internal reflection. Accordingly, the evanescent wave couples
two media in which traveling waves are allowed. This thus enables the energy transfer
from one of these media to the other one, although no traveling-wave solutions are
allowed within the sandwiched region. This is the direct quantum-mechanical analog
of tunneling, due to coupling of evanescent waves. This effect can be nicely observed
by sandwiching a think layer of air (a transparent, low refractive index material)
between two prisms. By means of this simple device, it can be observed how the
incident beam will “tunnel” through from one prism to the next one. The excitation
that the evanescent wave causes on the second prism, thus causing the appearance of
a power-carrying transmitted wave, leads to a decrease in the power carried by the
reflected wave in the first prism.
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There are different phenomena related to evanescent waves which have interesting
counterparts in quantum mechanics. For example, on the one hand, there is the Goos–
Hänchen [33–37] and Imbert–Fedorov effects [38, 39, 40]. The Goos–Hänchen effect
consists of a small shift undergone by linearly polarized light when it is totally
internally reflected. This shift takes place along the propagation direction and is
parallel to the surface—i.e., in the plane containing the incident and reflected beams.
This longitudinal shift is unexpected from a purely geometric treatment unless a
certain width (non-monochromaticity) is associated with the incident beam. In the
case of elliptically or circularly polarized light, apart from this shift a transversal
shift is also observed. This is the Imbert–Fedorov effect, which consequently is
perpendicular to the plane containing the incident and reflected beams. On the other
hand, another interesting effect related to optical tunneling (but also with its quantum-
mechanical counterpart) is the Hartman effect [41, 42]. This effect consists of the
independence of the delay-time undergone by a tunneling beam under frustrated total
internal reflection conditions with respect to the thickness of the barrier tunneled.
In other words, according to this effect, firstly described by Thomas Hartman in
1962 [41], the tunneling time tends to a constant for relatively large barriers [42].
Consider two prisms sandwiching a medium with higher refractive index, as before.
If the prisms are in contact, light will pass straight through. However, when a gap
is introduced in between, the light will get refracted, which can be frustrated by
increasing the incidence angle above the critical angle by total internal reflection.
For larger gaps between the prisms the tunneling time required to cross from one
prism to the other one approaches a constant, which can be mistakenly interpreted
as light transmitting with a superluminal speed [43]. Nevertheless, a careful analysis
of this effect shows [44] that it cannot be used to violate relativity by transmitting
signals faster than c, since tunneling times should not be linked to a velocity, for
evanescent waves do not propagate.

Finally, it is also worth mentioning that in modern material science one finds the
so-called metamaterials, with very interesting electromagnetic properties, such as
negative refractive indices [45]—nevertheless, areas of active research in this kind
of materials are also connected with other types of waves, such as acoustic or seismic.
In this regard, it is remarkable how it is possible to create materials such that light
gradually becomes extinct inside them, giving rise to a phenomenon which is known
as optical black holes [46–50], in analogy to the effect caused by gravitational black
holes on light. That is, this phenomenon essentially consists of taking advantage of
the possibility of reducing the light speed inside dielectric materials [51] to later on
recreate dielectric analogs of astronomical effects. Thus, though still under research
(see references before), in optical black holes slow light is passed through a fast-
spinning Bose–Einstein condensate (faster than the local speed of light). In analogy
to gravitational black holes, this rotation would give rise to a vortex capable of
trapping the light behind an event horizon [46]. Nevertheless, these optical black
holes analog would still present a series of problems (e.g., it cannot display Hawking
radiation or the related quantum effects cannot be reproduced), thus breaking a full
analogy with their gravitational counterparts.
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4.6 Wave Optics and Schrödinger Equation

4.6.1 Schrödinger-like Formulation of Electromagnetism

The description of wave optics presented up to here is based on the standard approach
to electromagnetism, grounded on Maxwell’s equations. Since this monograph is
concerned with Bohmian mechanics [52–56], a hydrodynamic picture of quantum
mechanics, it is interesting to show that electromagnetism—and therefore wave
optics—also admits a hydrodynamic picture or reformulation. In this case, as shown
by Bialynicki-Birula [57–60] and Sipe [61], a Schrödinger-like equation ruling the
behavior of the electromagnetic field emerges from Maxwell’s equations. This formu-
lation arises after assuming that, as happens with matter particles, the electromag-
netic fields can also be described by a well-defined wave function.4 More specifically,
following the same argumentation that led Dirac to the relativistic equation for the
electron, Bialynicki-Birula [57–60] reaches Maxwell’s equations. As summarized
in Table 1.5 from the book of Scully and Zubairy Quantum Optics [67], “semi-
classically” electromagnetic fields and massive particles are treated by means of the
Maxwell and Schrödinger equations, respectively. In the case of matter, it is common
to talk about first quantization, with � appearing as the key element which estab-
lishes the difference with the description of matter particles in classical mechanics.
However, in the case of electromagnetic fields, although there is also a wave-like
behavior associated with the fields (just as the wave function Ψ describes matter
particles in the Schrödingerian counterpart), � does not appear in Maxwell equations
and therefore one can still talk about “classical” electromagnetism. It is when going
to second quantization in both cases (i.e., to quantum field theory), by means of the
Schwinger and Dirac equations for matter and electromagnetic field, respectively,
that both are treated on the same footing. Thus, at the “semiclassical” level, there is
a sort of asymmetric consideration for matter and electromagnetic fields [67, 68].

Such an asymmetry can be avoided [67, 68], however, if one starts from the theo-
retical framework provided by the least action principle (see Chap. 7 for details).
Though the quantization scheme remains the same for matter particles within this
framework, in the case of electromagnetic fields there is an important difference: the
starting point is not the Maxwell equations, but Fermat’s principle and geometric
optics. As it will be further analyzed in Sect. 7.2, Fermat’s principle is the direct
analog of Hamilton’s least action principle (indeed, it predates the latter). Accord-
ingly, within the Fermatian formulation of optics, the topology displayed by optical
rays is influenced by the properties of the refractive index traversed by light during
its propagation (just as the topology of Newtonian trajectories for matter particles

4 In particular, the problem of finding a wave function for the photon is an issue which has
received much attention in the literature [57–73]. It is remarkable that recently it has been shown
experimentally [74] that such a wave function can be directly measured, which might open a very
fruitful and interesting debate of unexpected implications.

http://dx.doi.org/10.1007/978-3-642-18092-7_7
http://dx.doi.org/10.1007/978-3-642-18092-7_7
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depends on external forces or potentials). In this way, the passage from Fermat’s
ray formulation (i.e., geometric optics) to fields (waves) in terms of Maxwell’s equa-
tions would constitute in electromagnetism a somewhat first quantization. In this
regard, if the electromagnetic field is confined (for example, inside a waveguide), one
can readily observe the appearance of discrete modes (frequencies), just as discrete
energy levels appear in the problem of a particle confined in a box in quantum
mechanics—of course, this analogy can be extended to any type of wave, although
here this instance is stressed in order to make clearer the correspondence between
electromagnetic fields and matter waves. Proceeding along this direction, an analog
of the spin in the case of matter particles can also be found in the polarization vector
for electromagnetic fields—actually, both spin and polarization states admit a similar
algebraic description in terms of Pauli matrices.

The similarity between the descriptions in terms of complex wave fields applicable
to electromagnetic fields and matter waves can be noted through the so-called
Riemann–Silberstein complex electromagnetic vector [75–77],

�(r, t) = 1√
2
[√ε0 E(r, t)+ i

√
μ0 H(r, t)], (4.71)

where E and H are the time-dependent, real electric and magnetic fields, respectively,
satisfying Maxwell’s equations (4.1). After substitution of

E = 1√
2ε0

(
�+�∗

)
, H = 1

i
√

2μ0

(
�−�∗

)
(4.72)

into Maxwell’s equations in the absence of electric charges and charge densities, one
finds

i
∂�

∂t
= c∇ ×�, (4.73)

with

∇ ·� = 0. (4.74)

Equation (4.73) is the analog for the complex electromagnetic field� of Schrödinger’s
equation for matter waves. Moreover, ifρ = Ψ ∗Ψ describes the quantum-mechanical
probability density, the electromagnetic analogous, the energy density, can be
expressed as

U = 1

2
(ε0 E · E+ μ0 H ·H) = � ·�∗. (4.75)

In Sect. 7.6, it will also be seen how this analogy extends even to the energy flux.

http://dx.doi.org/10.1007/978-3-642-18092-7_7
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Notwithstanding, there is a difference between (4.73) and its quantum-mechanical
homologous: it is a vector equation, while Schrödinger’s equation is scalar. This is
related to the fact that electromagnetic fields are characterized by a polarization state,
which is absent in matter particles unless the spin state is considered (at the level
of first quantization), which leads to a vectorial description of the wave function.
Nevertheless, in those cases independent of the polarization state (e.g., if linearly
polarized light is being used), it is possible to reach a scalar description by applying
the operator −i∂/∂t on both sides of (4.73). This yields the wave equation

∂2�

∂t2 = c2∇2�, (4.76)

which is a more compact form of expressing (4.2). Now, consider for example, a
diffraction problem in vacuum, which is essentially a boundary-condition problem,
as seen in Sect. 4.3.4). In this case, one can further proceed with (4.76) and assume
a separable solution. Accordingly, if � is decomposed as

�(r, t) = �0(r)ϕ(t) = �0(r) e−iωt , (4.77)

the time-dependent part of the Riemann–Silberstein vector field is described by the
equation

∂2ϕ(t)

∂t2 = −ω2ϕ(t), (4.78)

with c = ω/k,while its space-dependent part, �0,will satisfy Helmholtz’s equation,

∇2�0(r)+ k2�0(r) = 0. (4.79)

This equation is the direct analog of the time-independent Schrödinger equation,
which immediately emerges if k is expressed in terms of the refractive index char-
acterizing the medium where the electromagnetic field is confined (analogy with
bound problems) or introducing the corresponding boundary conditions (analogy
with matter wave diffraction problems).

This alternative formulation of electromagnetism in terms of the complex
Riemann–Silberstein vector field has only been briefly discussed here (it will appear
again in Chap. 7) in order to show that the electromagnetic field also admits a similar
description to matter waves—actually, the Riemann–Silberstein vector field could be
regarded as a sort of semiclassical wave function for the photon [57–61]. However,
it should be noticed that this approach has also been considered from a practical
viewpoint in recent years. In particular, it has been used to analyze different prob-
lems from condensed matter physics and solid state physics [78–80], developing
the corresponding numerical tools, which keep certain resemblance to those in the
standard propagation of quantum-mechanical wave packets.

http://dx.doi.org/10.1007/978-3-642-18092-7_7
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4.6.2 Paraxial Approximation and Schrödinger Equation

The formulation presented in previous Section is general and allows us to under-
stand the similarity between optics and quantum mechanics from a different perspec-
tive (but based on similar equations of motion). At a different level, but also very
interesting, another way to reach a description similar to that provided by quantum
mechanics for matter particles arises when appealing to the paraxial approximation
[16]. As seen in Sect. 4.3.4, this is a small-angle approximation, which allows us
to replace sine and tangent functions by the value of their arguments (in radians),
indicating (within the viewpoint of geometric optics) that rays deviate little from
the optical axis of a system—more specifically, for angles � 10◦. This approxima-
tion is very common in geometric optics in relation to the analysis of lenses, but
also in Gaussian optics (paraboloidal waves and Gaussian beams), laser light and
waveguides (optical guides), all connected.

In the case of wave optics, in order to set up the paraxial approximation, if the
optical axis is oriented along the z-axis, one can assume that the time-independent
electric and magnetic fields can be expressed as

ψ(r) = φ(r)eikz z . (4.80)

Substituting this expression into Helmholtz’s equation (4.7), the latter can be
recast as

2ikz
∂φ

∂z
+ ∂

2φ

∂z2 = −∇2⊥φ + (k2
z − k2)φ, (4.81)

where ∇2⊥ is the transverse part of the Laplacian (for example, in Cartesian coor-
dinates, it reads as ∇2⊥ = ∂2/∂x2 + ∂2/∂y2). Now, making use of the paraxial
approximation, the longitudinal space variations of φ are neglected when compared
with the value of this function—∂2φ/∂z2 ≈ 0—, (4.81) can be expressed as

2ikz
∂φ

∂z
= −∇2⊥φ + (k2

z − k2)φ. (4.82)

As can be readily noticed, this equation is very similar to the Schrödinger one,
except for the evolution, which is not in time, but along the z-coordinate, acting here
as an “evolution” parameter. Equation (4.82) has been used, for example, to study the
design of waveguides with optimal conditions of light transmission [81–83]: based on
the direct relationship between (4.82) and Schrödinger’s equation, analogous optimal
control techniques can be found in the case of waveguides.
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Chapter 5
Dynamics of Open Quantum Systems

5.1 Introduction

Quantum dissipation constitutes a broad and active field of research within quantum
mechanics. One of the crucial problems in the early days of quantum mechanics was
to explain the stability of matter [1]. As it was very well known, classically electrons
should emit radiation when they move in closed orbits around the nucleus. Therefore,
they should lose energy, this leading to a radiation damping and eventually to the
collapse of electrons on nuclei. Bohr’s atomic model and then quantum mechanics
provided a solution to this problem: electrons remain in stationary orbitals and only
emit or absorb radiation when they “jump” from one orbital to another (quantum
transitions).

Strictly speaking, real physical systems do not exist in complete isolation in
Nature. All physical systems are open systems, since the interaction with their envi-
ronment can never be totally neglected. This interaction gives rise to a strong corre-
lation or entanglement between system and environment which eventually leads the
former to become a statistical mixture. The so-called theory of open quantum systems
[2] encompasses a series of formalisms and approaches developed to deal with this
kind of problems. Nowadays, the corresponding quantum dynamics is much more
developed and it can be considered as an interdisciplinary field, where very broad
branches of physics, chemistry and biology meet together to describe processes that
are ubiquitous in Nature [2–6]. Nevertheless, finding good quantum analogues of
classical dissipative systems constitutes a very difficult task and still remains an
open problem, because of the involvement of elements such as commutation rules,
time ordering and symmetrization, which cannot be neglected when dealing with the
quantum world.

A quite natural way to tackle this problem is starting from the information acquired
and processed in classical mechanics. It is well known that the form of Lagrangian and
Hamiltonian functions is not unique for conservative and nonconservative systems.
Hence different wave equations corresponding to the same classical equations of
motion can be obtained. Nevertheless, the fact that physical or mathematical incon-
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sistencies can be found in the different quantization procedures makes that most of
such wave equations can be disregarded. Furthermore, for dissipative systems the
Hamiltonian no longer represents the total energy of the system.

In general, it could be said there are two main routes to quantization. First,
appealing to arguments based on the correspondence principle, one can focus on
the classical equations of motion and try to find a quantized version of them, passing
from classical variables to homologous quantum operators subject to certain commu-
tation rules. This is the case, for example, of the so-called Yang–Feldman method [7].
Also, the Heisenberg equations of motion have their analog in classical mechanics.
Nevertheless, the formal connection between the equations of motion in classical
and quantum mechanics arises from Ehrenfest’s theorem, though in general it does
not discriminate Hamiltonians coming from different orderings in the dynamical
variables [6]. The rate of change in time of the expectation value associated with an
arbitrary Hermitian operator follows the classical equation of motion. Such an expec-
tation value has two interpretations: either it describes a property of a wave packet or
the (same) averaged property for a particle ensemble. Several attempts have also been
addressed to quantize systems with dissipative forces that depend quadratically (or
even higher powers) on velocity as well as those displaying quadratic damping [6].
The equation of motion for the reduced density matrix (once a tracing over the envi-
ronment degrees of freedom is carried out) or any system observable can be obtained
following several quantum approaches worth mentioning [8–12]: the Langevin equa-
tion, c-number equations, the Fokker–Planck equation, the linear response theory, the
Redfield theory (with the secular approximation similar to the rotating wave approx-
imation used in spectroscopy), the Agarwal master equation, the optical Bloch equa-
tions, the Floquet–Markov master equation, the Linblad equation, the quantum phase
space distributions based on the Wigner representation of quantum mechanics [13–
15] (see Sect. 3.3.1), the Yan–Mukamel phase space distribution, the path integral
approach (see Sect. 3.4), the quantum-classical hybrid formalisms and the quantum
state diffusion. All these approaches have been used in different branches of physics,
such as quantum optics, condensed matter physics, astrophysics, chemical physics
or mathematical physics.

Sometimes quantum processes have no analog in the classical world and therefore
there is not a unique way to reach the corresponding Hamiltonians, quantization rules,
etc., and some intuition is needed for such purposes. In any case, the only check is
comparison with experiment.

In quantum mechanics, if the total Hamiltonian is also split according to the
system-plus-bath Hamiltonian model used in the classical context (see Chap. 2),
dissipation is easier to tackle and understand. Both system and reservoir are in contin-
uous interaction and the effects—quantum coherence loss or decoherence, population
transfer, and/or (system-environment) energy exchange—arising from that interac-
tion will depend to a greater or a lesser extent on the coupling strength and its intrinsic
nature. Under these conditions, one speaks about the environment induced decoher-
ence (see Appendix B). An interesting and very important process is vibrational
dephasing of small molecules immersed in a rare gas in liquid phase [11, 16–20].
Fluctuations occur because of random collision events. Due to its interaction with the

http://dx.doi.org/10.1007/978-3-642-18092-7_3
http://dx.doi.org/10.1007/978-3-642-18092-7_3
http://dx.doi.org/10.1007/978-3-642-18092-7_2
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environment, the system usually behaves quite different with respect to its behavior
in isolation. Its time-evolution is not unitary and therefore cannot be described in
terms of the Schrödinger equation. In these cases, it is necessary to resort to statistical
quantum methods invoking, for example, the density matrix and Langevin formalisms
and/or introducing, in general, quantum stochasticity into the time-evolution equa-
tions: quantum master equations, quantum Langevin-type equations, and so on. The
energy transfer from the system to the environment is termed quantum relaxation or
damping. If there is no chance for the energy to move backwards into the system,
the unidirectional energy flow into the reservoir is then called quantum dissipation.
On short timescales, the distinction between quantum relaxation and dissipation is
obviously unclear. Only when the environment has a small number of degrees of
freedom, the energy moves backwards into the system; this phenomenon is called
a recurrence. Nonetheless, even for large systems, quantum noise arises since the
reservoir distributes some of its energy back into the system. Under certain conditions
the duration of the reservoir correlations is very short compared to the dynamical
evolution of the system. This leads to a total memory loss of the bath dynamics that
gives rise to a subsequent irreversible loss of coherence and energy (or population)
relaxation in the system. This is called a Markovian regime. Within this regime, the
time-evolution of the system does only depend on the present state of the system;
this is called a Markovian process. As will be seen, when this happens, the system
dynamics can be characterized by (relatively) simple Markovian master equations,
where one does not need to take into account the reservoir dynamics and its effects
on the system are described by means of certain operators. Quantum stochastic
methods in the Markovian and non-Markovian regimes have been widely developed
in quantum optics [5]. In particular, the non-Markovian dynamics of open quantum
systems has being developed very fast in the last years. It has been finally established
that there is no quantum Onsager regression theorem and the correct generalization
of the Onsager hypothesis is the fluctuation-dissipation theorem [21].

Irreversible quantum processes take place when dealing with extended systems
or, more precisely, with systems displaying an infinite number of degrees of freedom
(photon or phonon fields, for example). Quantum noise has its origin in our inability to
specify each of all the infinite modes of a given field when considering an environment
around a system; noise appears when the reaction of the field back on the system is
not neglected. Furthermore, spontaneous emission can also be considered quantum
noise since this emission is random with respect to the incoming signal adding noise
to the detector.

Another interesting aspect comes from the measurement process itself. A measure
apparatus can be understood as a sort of environment; the measurement can then be
identified with an outcome arising from the coupling between this apparatus and a
physical system. As the coupling strength reduces, the precision of the measurement
also decreases. This drawback, though, can be surmounted by averaging over many
measurements. Consequently, subsequent strong (“standard”) measurements of a
complementary observable will not be disturbed in the limit of vanishing coupling.
In this regard, the initial state of the quantum system is preselected, while the final
state is post-selected, this allowing to define the weak measurement of a certain
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property A as Aw = 〈Ψ f |A|Ψi 〉/〈Ψ f |Ψi 〉. The complex weak value Aw of a given
observable thus characterizes the observed outcomes of weak measurements. This
post-selection is a common tool in quantum information processing. The average
of the so-called weak measurement [22–25] is a simple expectation value of the
property to be measured when the final and initial states are not the same. This type of
measurements are in contrast with quantum state tomography [26, 27], which does not
allow to measure both complementary properties at once. These weak measurements
have other interesting properties. For example, a stochastic interpretation of quantum
mechanics in complex space has been proposed [28] based on an interpretation of
the weak value associated with the position operator as a conditional expectation
value. Another example is that, if repeated measurements take place on a given state
of the system, Heisenberg’s uncertainty principle applies, giving rise under certain
conditions to the so-called quantum Zeno and anti-Zeno effects [2, 5, 29–32].

In analogy to open classical systems (see Chap. 2), three main different approaches
to deal with quantum dissipative dynamics can also be considered here:

1. Effective time-dependent Hamiltonians.
2. Nonlinear Schrödinger equation.
3. The system-plus-bath model within a conservative scenario.

Although there are links among them, they will be discussed separately in order
to make more apparent such connections afterwards. This theoretical scheme is
valid for both dissipative and stochastic dynamics; their corresponding formalisms
are common to both cases and only those related somehow to trajectories will be
reported here. As an illustrative example, adsorbate diffusion on flat surfaces will be
considered, which can be handled analytically. This example will also provide the
theoretical background to later on study in detail wave-packet stochastic dynamics
in Volume 2.

5.2 The Quantization Problem: Standard Theoretical
Approaches

A natural way to find the quantum version of a classical dissipative system consists
of starting from the classical equation of motion for a given dynamical variable1

A(q, p, t) [6],

d A

dt
= {A, H} + ∂A

∂p
F(q, p), (5.1)

1 Throughout this chapter, to simplify the notation, quantum operators will be represented as
dynamical variables, i.e., without the hat symbol on top (e.g., O instead of Ô). Depending on the
context, the reader will be able to identify easily whether a given symbol is acting either as a variable
or as an operator.

http://dx.doi.org/10.1007/978-3-642-18092-7_2
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where F(q, p) is a friction force. Then, the Poisson bracket {A, H} is replaced by
the commutator of the two operators A and H according to the correspondence rule

{A, H} −→ 1

i�
[A, H ]. (5.2)

This leads to the well-known Heisenberg equation,

i�
d A

dt
= [A, H ] + i�

∂A

∂p
F(q, p), (5.3)

where an appropriate symmetrization of the second term in the right-hand side should
be taken into out. Furthermore, if A is considered to be q and p, from the time
derivative of [q, p] = i� and (5.3), it follows that

[q, F] = 0 (5.4)

and therefore F can only be a function of q.
As stated by some authors, quantum mechanics deals with operators following

an “awkward” noncommutative algebra. This algebra is also followed for the same
operator at different times. This fact is crucial when trying to quantize a dynamical
system from a classical description. This problem is known as the time ordering
problem. The ordered operator algebra allows us to associate c-number functions
with them and transform quantum problems to equivalent “classical” or c-number
problems where theoretical manipulation is easier. This is very much related to the
correspondence principle where the prescription is to carry out the limiting procedure,
�→ 0, and/or by considering Ehrenfest’s theorem.

An alternative route to quantization is the so-called Yang–Feldman method [7]
in quantum field theory, where the idea is to quantize the equation of motion (or
its solution) directly in the Heisenberg picture instead of starting from the canonical
formalism. This starting point was postulated and used by Vineyard [33], for example,
within the Langevin equation formalism in the scattering of slow neutrons by liquids.

Since noise is a time-dependent (stochastic) process, its autocorrelation function at
two different times gives its spectrum of frequencies (see Appendix B). The quantum
treatment was originally developed by Callen and Welton starting from the classical
Nyquist–Shannon sampling theorem [34, 35]—though credit should also be given
to Whittaker [36] and Kotel’nikov [37]. However, a better treatment was carried out
by different authors by taking into account the time ordering of the corresponding
operators. In general, as in the classical case, and in presence of environments,
when the quantum equations of motion are considered without averaging, one finds
quantum fluctuations. Dissipation and fluctuations have the same physical origin and
it is due to the coupling with the environment. Both phenomena are related by the
fluctuation-dissipation theorem [38]. A new aspect to deal with is decoherence or
the transition from a pure state into a mixed one again due to the coupling to the
environment.
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5.2.1 Time-Dependent (Effective) Hamiltonians

An effective description of dissipation can be achieved through explicitly time-
dependent Hamiltonians. As mentioned in Chap. 2, one of the former Hamiltonian
models is the so-called Caldirola–Kanai (CK) Hamiltonian [39, 40],

HCK = p̄2

2m
e−γt + V (q̄)eγ t , (5.5)

which comes from the Lagrangian

LCK =
[ ˙̄q2

2m
− V (q̄)

]
eγ t , (5.6)

with the canonical variables

p̄ = peγ t = mq̇eγ t , q̄ = q. (5.7)

The transformation from (q, p) (physical variables) to (q̄, p̄) is non-canonical. Orig-
inally, it was seen as a system with variable mass, m(t) = me− γ t , when working
with the physical variables. As said in Chap. 2, this Hamiltonian leads to the correct
equation of motion in configuration space, but not in phase space. The damped
harmonic oscillator, where V (q) = mω2

0q2/2, represents the paradigmatic example.
It is straightforward to show that

[q̄, p̄] = i�eγ t , (5.8)

which fulfills the commutation relation only at t = 0. As a consequence, the uncer-
tainty principle is violated. Even more, the Schrödinger equation with HCK applied
to the harmonic oscillator leads to the so-called loss-energy states. However, such a
Hamiltonian is not the energy of the system and it does not give the correct equation
for the time-evolution of the momentum operator [6, 41–43].

Several attempts to circumvent such problems can be found in the literature. For
example, for the damped harmonic oscillator, Schuch [44] has shown that there is a
canonical transformation between HCK and the harmonic oscillator Hamiltonian,

HQ = P2

2m
+ 1

2
mΩ2 Q2, (5.9)

in terms of what is called expanding variables,

Q = q̄eγ t , (5.10a)

P = p̄e− γ t + m γ q̄eγ t , (5.10b)

with Ω =
√
ω2

0 − γ2/4. In the underdamped motion, ω0� γ and thus Ω is real.
Obviously, with these new coordinates, the uncertainty principle is not violated since

http://dx.doi.org/10.1007/978-3-642-18092-7_2
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[Q, P] = i�. Equation (5.9) represents the initial total energy and the correct clas-
sical equation for the corresponding damped harmonic oscillator is obtained in terms
of q. Schuch also showed that HQ can be obtained from a non-canonical transfor-
mation between (q, p) and (Q, P) from

Hqp =
(

p2

2m
+ 1

2
mω2

0q2 + 1

2
γ qp

)
eγ t . (5.11)

This Hamiltonian, which yields the correct equation of motion, expresses the fact
that the initial energy is dissipated into an implicit environment.

The Schrödinger equation for Ψ (Q, t) is formally written as

i�
∂Ψ (Q, t)

∂t
= HQΨ (Q, t), (5.12)

carrying out the quantum calculation in the expanding system. Even more, the
corresponding Ehrenfest equations for 〈P〉 and 〈Q〉 are also fulfilled. A non-unitary
transformation to the physical variables or, in particular, to Ψ (q, t) can finally be
performed to reach observables. As will be shown later on, this formalism can be
related to a logarithmic nonlinear Schrödinger equation.

Coherent and squeezed states of a damped harmonic oscillator have also been
described fulfilling the uncertainty principle and the usual commutation relations
[6] as well as using Dekker’s Hamiltonian [45]. In the case of a general interaction
potential, V (q), and many particles, it should be stressed that it is better to proceed by
following the dynamics of a conservative system, i.e., using system-plus-environment
Hamiltonians. This approach is much more natural and successful for such purposes.

5.2.2 Nonlinear Hamiltonians

In the sixties, Senitzky [46] and Ford et al. [47] showed that a system of coupled
harmonic oscillators could model a heat bath. The corresponding Brownian motion
was then studied both classically and quantum-mechanically. In this model, a
Langevin equation was obtained as a result of reducing the dimensionality of the
full problem by tracing out over the bath variables. The heat bath was thus only
described by two parameters: the friction coefficient and the temperature through a
random force. This random force was shown to be a Gaussian stochastic process.
The variables in the Langevin equation were assumed to be operators with order
preserved according to the Heisenberg picture. Different orderings are available,
such as the symmetric rule, Weyl’s rule, etc., in order to construct Hermitian opera-
tors. The normal product of the random force was shown to be a Gaussian process,
but not Markovian. This point is critical when compared to the classical counter-
part. For an Ohmic or constant friction coefficient, the classical Gaussian process is
also Markovian. The denomination of Ohmic friction comes from the fact that for a
constant field of force F, the average value of the momentum reads like Ohm’s law
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from the Langevin equation, i.e., 〈p〉 = λ−1 F , where the current described by 〈p〉 is
proportional to the field applied, F, and proportionally inverse to the resistance or
friction coefficient.

Kostin [48, 49] derived the so-called Schrödinger–Langevin equation for a
Brownian particle interacting with a thermal bath. The random force was assumed
to arise from a random potential linearly dependent on the particle position, Vr .

In one dimension this equation reads as

i�
∂Ψ (q, t)

∂t
= − �

2

2m

∂2Ψ (q, t)

∂q2 +[V (q)+Vr (q, t)]Ψ (q, t)+ K (Ψ (q, t)), (5.13)

where

K (Ψ (q, t)) = � γ

2im
ln

[
Ψ (q, t)

Ψ ∗(q, t)

]
(5.14)

is known as the energy dissipation operator. This nonlinear wave equation has been
applied to several problems, such as the damped harmonic oscillator and the motion
of a charged particle in the presence of damping while it is moving in an external
electromagnetic field [6]. Because of the nonlinearity of this equation, the superposi-
tion principle does not hold and a general, unique solution cannot be found. Indeed,
Hasse [50] showed that Kostin’s Hamiltonian is a special case of a more general
nonlinear Hamiltonian,

H = T + V + γ W, (5.15)

where T and V are the usual kinetic and potential energy operators, and W satisfies the
requirements: (i) 〈W 〉 = 0 and (ii) 〈p〉 = ∂W/∂q according to Ehrenfest’s theorem.
The second requirement can also be fulfilled for a number of different W operators.
For example, Süssmann’s Hamiltonian is a special case, originally found by this
author in a completely empirical way when studying the force-free motion of wave
packets traveling along classical damped paths. W can also be expressed as

W =
∫ q

0
q̇ndq, (5.16)

which, with the usual quantization rule for the momentum, becomes a differential
operator of order n. The corresponding Hamiltonian is, in general, complex and non-
Hermitian. For linear damping (n = 1), the interaction potential becomes complex
with negative imaginary part, i.e., V (q)− iλ�/m. This potential, called the optical
potential, is in general nonlocal and has been widely used in atomic and nuclear
physics (for example, in Feshbach’s theory). Velocity dependent interactions have
also been introduced in nuclear scattering and band theory of solids.

One can also follow Schrödinger’s procedure to generate a wave equation. As
shown in Sect. 3.2.1, from the Hamilton–Jacobi equation for the action S and
momentum p = ∂S/∂q,

http://dx.doi.org/10.1007/978-3-642-18092-7_3
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∂S

∂t
+ H(q, ∂S/∂q, t) = 0, (5.17)

and introducing the wave function Ψ through the relation

S(q, t) = −i� ln(Ψ (q, t)), (5.18)

the continuity equation for ρ = Ψ ∗Ψ reads as

∂ρ

∂t
+ 1

m
∇ (ρ Re{p}) = 0, (5.19)

where Re{p} stands for the real part of p, which is in general a complex quantity if
Ψ is complex, such that

Re{p} = − i�

2m

∂ ln (Ψ/Ψ ∗)
∂q

,

Im{p} = − i�

2m

∂ (ln ρ)

∂q
,

(5.20)

with the mean value of the imaginary part always vanishing. Thus, the expression
for p does again fulfill Hasse’s second requirement. The Kostin energy dissipation
operator can then be expressed as

W = − i� γ

2

[
ln

(
Ψ

Ψ ∗

)
−

〈
ln

(
Ψ

Ψ ∗

)〉]
. (5.21)

For a damped harmonic oscillator, the solutions contain the undamped frequency
ω instead of the damped or reduced frequency Ω. Even more, the density ρverifies
the reversible continuity equation for a system displaying damping which follows
an irreversible dynamics. This contradiction was avoided by Schuch et al. [51] by
introducing a diffusion term in the continuity equation arriving at the Fokker–Planck
equation,

∂ρ

∂t
+ 1

m
∇(ρ Re{p})− D

∂2ρ

∂q2 = 0, (5.22)

with the additional condition

−D

ρ

∂2ρ

∂q2 = γ(ln ρ − 〈ln ρ〉) (5.23)

to be satisfied in order to achieve separation of the two equations for the amplitudes
Ψ and Ψ ∗. The mean value on the right-hand side guarantees the normalization.

The so-called logarithmic nonlinear Schrödinger equation is written as

i�
∂Ψ

∂t
= [H − i� γ(ln ρ − 〈ln ρ〉)]Ψ, (5.24)
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where Hasse’s second requirement comes from considering the irreversible diffusion
term. As is well known, the damping motion described by the Fokker–Planck equation
can always be expressed in terms of its corresponding Langevin equation [52].

An extension to the nonlinear Schrödinger equation can be stated by writing [53]

i�
∂Ψ

∂t
= HΨ + i�DG(Ψ ), (5.25)

where H = T + V and the nonlinear term is given by

G(Ψ ) = ∇2Ψ + |∇Ψ |
2

|Ψ |2 Ψ. (5.26)

The continuity equation is then modified to a Fokker–Planck equation according to

∂ρ

∂t
+ ∇ · J = D∇2ρ, (5.27)

where J is the usual quantum probability current density.
A phenomenological nonlinear wave equation with complex interaction was also

proposed by Gisin [54, 55] to account for decaying states. This wave equation is

i�
∂Ψ

∂t
=

(
1− iκ

2

)
HΨ + iκ

2
〈Ψ |H |Ψ 〉Ψ, (5.28)

where H is the usual Hamiltonian for the undamped system and κ is a dimensionless
positive and real damping constant. This wave equation presents some advantages,
such as: the norm is independent of time, it reduces to Schrödinger’s equation when
Ψ is an eigenstate of H, the rate of change of the energy expectation value is negative
definite and the equation of motion for the damped harmonic oscillator is obtained
in terms of 〈q〉.

Finally, it is worth mentioning that Razavy [56], Wagner [57] and Schuch [58] have
shown a connection between the Caldirola–Kanai Hamiltonian and the log-nonlinear
Schrödinger equation following Schrödinger’s quantization procedure.

5.2.3 The System-plus-Environment Hamiltonian

This approach starts from a total conservative system, formed by a physical system
of primary interest coupled to an environment. As it has been shown in Chap. 2, there
are several models where the total Hamiltonian is expressed as a sum of Hamiltonians
for the physical system of interest, the environment and coupling between them. The
quantization procedure is mainly carried out in the Heisenberg picture and, therefore,
within the quantum Langevin framework. As previously mentioned, Senitzky [46]
and Ford et al. [47] showed that a system of coupled harmonic oscillator can model a

http://dx.doi.org/10.1007/978-3-642-18092-7_2
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heat bath. Different models of heat bath (assuming a linear coupling to the physical
system) have been proposed in the literature [59] and probably the most popular ones
are: the rotating wave model [8], Ullersma’s model [6] and the Caldeira–Leggett
(CL) model [60]. Ullersma’s model was discussed previously by Magalinskii [3]
and, in the path integral formulation of quantum mechanics, also by Feynman and
Vernon [61]. Dissipative dynamics in tunneling processes have been widely studied
in the path-integral context [3, 60, 62]. Using the CL model with Ohmic friction,
Yu and Sun [63, 64] also calculated the wave function of the composite system in
the Schrödinger picture. In classical mechanics the random force can be neglected
at zero temperature, but quantum-mechanically this force is always present due to
the zero point motion. They also showed the connection between the CL and the
CK model Hamiltonians when the quantum fluctuation is neglected. Even more, the
dissipation was to be suppressed the spreading of the free wave packet if the breadth
of the initial wave packet was so wide that the effect of the random force could be
ignored.

On the other hand, the optical potential can also be derived from a conser-
vative approach. This case has been widely studied in nuclear Feshbach theory
[65, 66], where inter-particle forces are assumed to be short-ranged (exponential
dependence). Special emphasis has to be given on decaying systems with no classical
analogues. The quantum theory of line width using the so-called Wigner–Weiskopf
model [8] is the paradigmatic case. Finally, if a chemical or physical problem is not
easily describable by a system-plus-environment Hamiltonian or is simply unknown,
a phenomenological method can be applied based on the so-called Pauli master equa-
tion [12], which contains transition rates between time-dependent occupation prob-
abilities. It describes an incoherent motion of the physical system since the coupling
with the environment becomes predominant.

In what follows, the interest will focuss on conservative approaches where
theoretical formalisms have been widely developed. Since the main goal of this mono-
graph is to present a trajectory view of quantum mechanics, only those formalisms
that can provide a trajectory image of physical processes will be considered.

5.3 Conservative Approach to Dissipative and Stochastic
Dynamics

As previously mentioned, the whole system (physical system and bath) is consid-
ered as an isolated system. Therefore, the powerful standard quantum-mechanical
theoretical formalisms developed so far are at our complete disposal. Dissipation
can be described following one of the three standard pictures of quantum mechanics:
Schrödinger, Heisenberg and interaction. In the first and third pictures, one always
tries to find master equations that account for the time-evolution of the so-called
reduced system, where the bath degrees of freedom have been traced out. Among
this type of equations of motion, the simplest class is that of Markovian character
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where one assumes that the bath has no memory and the time-evolution of the reduced
density matrix depends only on its present time. An alternative way to the density
matrix formalism comes from the path integral formulation of quantum mechanics.
Many efforts are being addressed along this way with also great success. If the Heisen-
berg picture is followed, the quantum (generalized or standard) Langevin equation is
reached (needless to say that all formulations are equivalent). Essentially, this proce-
dure consists of replacing the reservoir by damping terms in the Heisenberg equations
of motion of a conservative system and then adding random forces as driving terms
that give rise to fluctuations over the system. These stochastic quantum formalisms
are being addressed to more and more complicated systems. There are recent review
works [67, 68] and books [2, 3, 5] which can provide the reader with a more detailed
overview of the field.

Hamiltonians describing system-plus-environment (or system-plus-bath) interac-
tions are generally expressed as

H = HS + HB + HSB = H0 + HSB, (5.29)

where HS and HB describe, respectively, the free evolution of the system and the
reservoir or bath. In the literature, it is commonly assumed that the environment
consists of a large or infinite collection of independent harmonic oscillators. Different
damping mechanisms may require different forms or models for HB . However, the
results should not be in general very sensitive to the particular model chosen. In
the analytical treatments presented below, the simplest model is considered: an infi-
nite collection of non-interacting harmonic oscillators in thermal equilibrium at a
temperature T. This model is generally used to describe a reservoir consisting of
phonon or photon fields [3, 5]. Since HS and HB deal with different sets of degrees
of freedom (the system and environment subspaces do not overlap), they commute.
HSB in (5.29), on the other hand, describes the system-environment coupling. Some-
times, when the environment dynamics is not relevant for the solution of the problem,
but only its effects over the system, one can conveniently express the system–reservoir
interaction as given by the right-hand side of the second equality in (5.29). Then,
within a perturbation scheme, H0 ≡ HS + HB would correspond to the zero order
Hamiltonian. In general, the system–reservoir coupling term, HSB , is assumed to be
initially “turned off” at t = 0. In scattering problems, this condition holds since one
can assume that the incoming particle and the target are not interacting at t →−∞. In
many cases the system and reservoir are in continuous contact (e.g., a diatomic solute
in a liquid phase solvent) and one can make use of such a hypothesis only in the weak
coupling limit (see Appendix B). When this limit does not hold, the trace operation
over the bath variables leading to the master equation for the reduced density matrix
is questionable since the entanglement prevents it. The role of initial conditions has
largely been discussed in many works since it is critical in the time-evolution of open
quantum systems [69–71].
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5.3.1 The Langevin Formalism

When working in the Heisenberg picture, one readily reaches the generalized
quantum Langevin equation. The reservoir is then completely eliminated by incor-
porating suitable quantum noise operators, which act as driving terms in the motion
equation leading to fluctuations in the system. Thus, the equation of motion of a
general system operator A in the Heisenberg picture reads as

Ȧ(t) = − i

�
[A(t), HS + HSB]. (5.30)

After some convenient manipulations, this equation can be transformed into a gener-
alized, non-Markovian Langevin equation [3]. In doing so, (5.30) becomes [8]

Ȧ(t) = − i

�
[A(t), HS] −

∫ t

0
γA(t

′)A(t − t ′) dt ′ + G A(t). (5.31)

As it can be noticed, in this expression there is a formal separation of the total
force into three different components: a driving force, a systematic or dissipative
force with retardation effects characterized by the kernel γA, and a random force or
quantum noise, G A, also called the random operator Langevin noise source. Noise
sources are always chosen such that their reservoir averages are zero. Moreover,
according to the fluctuation-dissipation theorem, the spectral density of the time
autocorrelation function of the random force is related to the kernel in the frequency
domain—actually, as is well-known, this theorem states that the dissipation force
is actually determined by the random force autocorrelation function. The memory
kernel, which gives the dissipation coefficient, represents the resistance or impedance
of the system by means of which external work is dissipated into thermal energy. In
the Markovian approximation, the relaxation time of A is much larger than reservoir
correlations, and (5.31) becomes

Ȧ(t) = − i

�
[A(t), HS] − γA A(t)+ G A(t), (5.32)

where γA is the dissipation coefficient. This general formalism, which has been
applied to different physical processes, can also be extended to a c-number Langevin
formalism known as the quasi-classical version of the Langevin equation due mainly
to Senitzky [46] and Schmid [72]. Furthermore, a very interesting and active line
of research in this context is Kramers’ turnover problem in the quantum domain
[73, 74]. In particular, the strong friction limit described by the so-called quantum
Smoluchowski equation has also attracted a lot of interest [75].

Now, consider the Caldeira–Leggett Hamiltonian model. The role of initial condi-
tions has also been largely discussed in this model since some problems when solving
the Langevin equation can appear [76, 77]. This model will be applied here to describe
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some simple physical processes, such as atom diffusion on flat surfaces and the
vibrational relaxation of a particle adsorbed on a surface or adsorbate, since both
problems lead to full analytical descriptions [78]. Within this context, space–time
correlation functions play a key role, since they are used to describe the decay of
spontaneous thermal fluctuations at surfaces, this being central to the study of trans-
port phenomena. These functions are defined as the thermodynamic average of the
product of two dynamical variables, each one expressing the instantaneous devia-
tion from its corresponding equilibrium value at particular points on the surface and
time. A complete description of the particle dynamics in a many-body system is then
reached when the behavior of the corresponding correlation functions over the entire
wavenumber range is studied. This range splits into different characteristic regions,
each one associated with a different set of properties of the system. In the case of scat-
tering experiments, since the momentum and energy transfers of the probe particles
are the relevant quantities, any correlation-function-based theory has to be developed
necessarily in terms of such quantities. Space–time correlation functions can also be
used to describe the linear response of a fluid under a weak, external perturbation.

Thus, to start with, consider the so-called differential reflection coefficient,

d2R(ΔK, ω)
dΩdω

= ndF S(ΔK, ω). (5.33)

In analogy to scattering of slow neutrons by crystals and liquids [79, 80], this quantity
constitutes the observable magnitude in surface diffusion experiments. More specifi-
cally, this coefficient gives the probability that the probe particles (usually He atoms)
scattered from the interacting adsorbates on the surface reach a certain solid angle
Ω with an energy exchange �ω = Ef − Ei and wave vector transfer parallel to the
surface ΔK = K f − Ki . In (5.33), nd is the concentration of adparticles; F is the
atomic form factor, which depends on the interaction potential between the probe
atoms in the beam and the adparticles on the surface; and S(ΔK, ω) is the dynamic
structure factor, which provides information about diffusion and low frequency
vibrational relaxation. Experimental information about long distance correlations
is obtained from the dynamic structure factor when considering small values
of ΔK, while information on long time correlations is provided at small energy
transfers, �ω.

Pair distribution functions are usually given in terms of the so-called van Hove
or time-dependent pair correlation function G(R, t). This function is related to the
dynamic structure factor by a double Fourier transform—in space and time—, as

S(ΔK, ω) = 1

2π�N

∫∫
G(R, t)ei(ΔK·R−ωt) dR dt. (5.34)

Given an adparticle at the origin at some arbitrary initial time, G(R, t) represents
the average probability to find a particle (the same or another one) at the surface
position R = (x, y) at a time t. This function thus generalizes the well-known pair
distribution function g(R) from statistical mechanics, since it provides information
about the interacting particle dynamics.
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Adsorbate position operators are given, in general, by the respective Heisenberg
operators (defined for all j = 1, . . . , N adparticles and time t),

R j (t) = ei Ht/�R j e
−i Ht/�, (5.35)

where H is the Hamiltonian of the total system. The space Fourier transform of the
G-function is the intermediate scattering function,

I (ΔK, t) = N
∫ ∫

G(R, t)eiΔK·RdR = 1

N
〈ρΔK(t)ρ

†
ΔK(0)〉β, (5.36)

where the ρΔK operator defined as

ρΔK(t) =
N∑

j=1

e−iΔK·R j (t) = ρ†
−ΔK(t) (5.37)

is the Fourier component of the adsorbate number density operator,

ρ(R, t) = 1√
N

N∑
j=1

δ(R − R j (t)). (5.38)

In (5.36) the brackets denote the ensemble average over the trajectories associated
with each adsorbate R j (t). The intermediate scattering function is the typical observ-
able issued from He and neutron spin-echo experimental techniques. From (5.34)–
(5.38), it is seen that the dynamic structure factor can be expressed in terms of a
density–density correlation function and determined by the spectrum of the sponta-
neous fluctuations. Moreover, the static structure factor, defined as S(ΔK, t = 0), is
related to g(R), which describes the instantaneous correlation between adsorbates.

Due to the quantum character of the different operators introduced above, several
comments are worth stressing. First, ρΔK(t) and ρ†

ΔK(0) commute only at t = 0.
Second, the system studied here is assumed to be stationary and, therefore, the origin
of time is arbitrary for the correlation function associated with the density operators.
Third, the complex character of the corresponding correlation function is a signature
of the quantum dynamics of the interacting system. Fourth, the G-function is also
complex, but the dynamic structure factor is real and positive definite because it
represents a cross-section. More properties of the ρΔK(t) operator, the G-function
and the dynamic structure factor can be found in Lovesey’s book [80]. And fifth, the
so-called detailed balance principle can be expressed as

S(ΔK, ω) = e�ωβ S(−ΔK,−ω), (5.39)

with β = 1/kB T and kB Boltzmann’s constant, which expresses that the probability
that a He atom loses an energy �ω is equal to e�ωβ times the probability that a He
atom gains an energy �ω.
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After van Hove [79], if R0 is the range of the G-function and T0 its relaxation
time, �/R0 and �/T0 determine the orders of magnitude of average momentum
and energy transfers in the scattering process of the probe particles, which for light
masses display the observable recoil effect. Thus, the time variation of G affects
the total scattering and angular distributions only for a particle spending at least a
time of order T0 over a correlation length R0. Moreover, if the mean de Broglie
wavelength, Γ , defined in Chap. 1, is small compared to inter-adparticle distances
or the range of adsorbate–adsorbate interaction, no quantum effect will manifest in
the G-function, which deals with pairs of adparticles separated by distances of the
order of R0. Nevertheless, for small timescales (t� T0 or t ∼ �β), the dynamics
entirely concentrates on a region of the order of or less than Γ , and quantum effects
are noticeable. This time could be considered as the coherence time, afterwards the
diffusion process starts to be decoherent. The imaginary part of the G-function is
greater at small values of time.

The dynamic structure factor can also be related to the system linear response
function [80],

φ(ΔK, t) = i

�N
〈[ρΔK(t), ρ

†
ΔK]〉, (5.40)

through the fluctuation-dissipation theorem, as

S(ΔK, ω) = 1

2π i
[1+ n(ω)]

∫ ∞
−∞

eiωt φ(ΔK, t) dt, (5.41)

where 1+n(ω) = [1−exp(−�ωβ)]−1 is the detailed balance factor, with n(ω) being
the Boltzman factor. Equation (5.41) links the spectrum of spontaneous fluctuations,
S(ΔK, ω), to the dissipation part of the response function. The time derivatives of
the response function are related to the Heisenberg equation of motion (3.50) of the
ρΔK operator; moments of the dynamic structure factor involve nested commutators
to evaluate them. The φ-function is a causal function because it cannot be defined
before the external perturbation has been switched on. For scattering with He atoms,
the perturbation is assumed to start at−∞ and finish at+∞, having typically a bell
shape. In (5.41), the time Fourier transform of φ defines a generalized susceptibility
function, χ(ΔK, ω) and, therefore, can be again expressed as

S(ΔK, ω) = −i [1+ n(ω)]χ(ΔK, ω). (5.42)

This susceptibility is complex and the real and imaginary parts are related through
the well-known Kramers–Kroning or dispersion relations [80].

In order to go a step further into the dynamics, a Hamiltonian has to be specified.
In surface diffusion, the full system+ bath Hamiltonian is usually written [81] as

http://dx.doi.org/10.1007/978-3-642-18092-7_1
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H = p2
x

2m
+ p2

y

2m
+ V (x, y)

+
N∑

i=1

[
p2

xi

2mi
+ mi

2

(
ωxi xi − cxi

miωxi

x

)2
]

+
N∑

i=1

[
p2

yi

2mi
+ mi

2

(
ωyi yi − cyi

miωyi

y

)2
]
,

(5.43)

where (px , py) and (x, y) are the adparticle momenta and positions with mass m;
and (pxi , xi ) and (pyi , yi ) with i = 1, · · · , N are the momenta and positions of the
bath oscillators (phonons), with mass and frequency given by mi andωi , respectively.
Phonons with polarization along the z-direction are not considered. The Hamiltonian
was originally considered by Magalinskii and Caldeira and Leggett, who used it for
weak and strong dissipation (a general discussion about the Hamiltonian (5.43) can
be found in [3]). In surface diffusion, V (x, y) is in general a periodic function
describing the surface corrugation at zero temperature. The harmonic frequencies
of the bath modes and the coupling coefficients are expressed in terms of spectral
densities, defined as

Ji (ω) = π

2

N∑
j=1

c2
i j

m jω
2
i j

[
δ(ω − ωi j )

]
, (5.44)

with i = x, y. These densities enable the passage to a continuum model.
In the Heisenberg picture, the time-evolution of the position operators is given by

a generalized Langevin equation for each system coordinate

mẍ(t)+ m
∫ t

0
γx (t − t ′)ẋ(t ′) dt ′ + ∂V (x, y)

∂x
= Nx (t), (5.45a)

mÿ(t)+ m
∫ t

0
γy(t − t ′)ẏ(t ′) dt ′ + ∂V (x, y)

∂y
= Ny(t), (5.45b)

where the associated friction functions are defined through the cosine Fourier trans-
form of the spectral densities,

γi (t) = 2

πm

∫ ∞
0

Ji (ω)

ω
cosωt dω, (5.46)

with i = x, y. The nonhomogeneity of (5.45) represents a fluctuating force which
depends on the initial position of the system and initial positions and momenta of the
oscillators of each bath (see Eq. (2.78) of Chap. 2) [3]. For each Cartesian compo-
nent of the noise, it can be easily shown that its equilibrium (canonical ensemble)
expectation value with respect to the heat bath including the corresponding bilinear
coupling to the system vanishes. On the contrary, the noise autocorrelation function

http://dx.doi.org/10.1007/978-3-642-18092-7_2
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(each Cartesian component) is a complex quantity because in general it does not
commute at different times. In the classical limit � → 0, each noise correlation
reduces to mkB T γi (t), with i = x, y. For Ohmic friction, γi (t) = 2 γi δ(t), where
γi is a constant and δ(t) is Dirac’s δ-function. Under the assumption of Ohmic fric-
tion, it can be shown that noise in this model is white. The paradigm of this type of
noise is the Gaussian white noise. Dealing with large systems (the surface seen as a
thermal bath) where the number of collisions between substrate and adsorbate is very
high, one of the fundamental theorems of the theory of probability, namely the central
limit theorem, ensures that the fluctuations of the bath will be Gaussian distributed.
Diffusion can then be described by a Brownian-type motion involving a continuous
Gaussian stochastic process (see Appendix B). In virtue of the fluctuation-dissipation
theorem, such fluctuations can be related to the friction coming mainly from surface
phonons: the phonon friction. Electronic friction due to low-lying electron–hole pair
excitations is usually neglected in most of cases. Moreover, quantum mechanically
[3], for Ohmic friction the imaginary part of each noise function is a step function and
its real part goes with csch2(π t/�β). Thus, at zero surface temperature, the noise is
still correlated even for long time (it decays as t−2) in contrast to the classical case.
These facts give rise to important differences with respect to the classical case such
as, for example, the noise and the system coordinates are correlated instead of being
zero. A detail study of surface diffusion at very low (or even zero) temperatures as
well as the role of the measurement process (Zeno and anti-Zeno effects) will be
given in Volume 2.

In order to simplify this theoretical treatment, only classical noise will be consid-
ered, though keeping in mind that the quantum results will be only valid for not too
low surface temperatures. Moreover, the motion of only one adsorbate is considered
within the so-called single adsorbate approximation since, for very low coverage,
adparticles are considered non-interacting. Thus, if Ohmic friction is assumed,
Eqs. (5.45) reduce to two coupled standard Langevin equations2 (Markovian approx-
imation),

mR̈ = −m γ Ṙ − F(R)+ δN, (5.47)

and where δN is the fluctuation due to the lattice (thermal) vibrational effects which
are simulated by a Gaussian white noise acting on the adparticle.

In general, an exact, direct calculation of I (ΔK, t) or S(ΔK, ω) is difficult to
carry out due to the noncommutativity of the adparticle position operators at different
times obeying the Markovian Langevin equation (5.47) and for a nonseparable inter-
action potential. However, for certain simple cases, closed formulas can be easily
obtained [78]. The product of the two exponential operators in (5.36) can be evalu-
ated according to a special case of the Baker–Hausdorff theorem, namely the disen-
tangling theorem [8]. If A and B are two noncommuting operators satisfying the
condition [A, [A, B]] = [B, [A, B]] = 0, then eAeB = eA+Be[A,B]/2. In particular,
this theorem holds when the commutator of A and B is a c-number. Thus, (5.36) can

2 The δ-function counts only one half when the integration is carried out from zero to infinity.
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be expressed as a product according to

I (ΔK, t) = I1(ΔK, t)I2(ΔK, t), (5.48)

which is a product of two quantum intermediate scattering functions I j (ΔK, t),
with j = 1, 2, associated with the exponentials of the commutator [A, B] and
A+ B, respectively. By identifying the operators A and B with A= iΔK ·R(0) and
B= − iΔK ·R(t), the factor I1 involving their commutator will depend on the char-
acter of the dynamics; for classical dynamics, this factor is one. Within the so-called
Gaussian approximation, the second factor can also be written as follows

I2(ΔK, t) = 〈e−iΔK·[R̂(0)−R̂(t)]〉 = 〈e−iΔK
∫ t

0 v̂K(t ′)dt ′ 〉
� e−ΔK 2

∫ t
0 (t−t ′)Cv(t ′)dt ′ , (5.49)

where Cv(t) = 〈vΔK(t)vΔK(0)〉 is the velocity autocorrelation function along the
direction given by ΔK or the longitudinal direction. Equation (5.49) is exact if the
velocity operator gives rise to a Gaussian stochastic process.

In the case of diffusion on flat or very low corrugated surfaces, no particular direc-
tion is privileged and the role of the adiabatic adsorbate–substrate interaction poten-
tial is negligible (one can assume V (x, y) ≈ 0). Thus, only the action of the thermal
phonons is relevant and the stochastic single-adparticle trajectories R(t) running on
the surface obey the following Markovian Langevin equation (5.47),

mR̈(t) = −m γ Ṙ(t)+ δN(t), (5.50)

Usually it is assumed that probe particles do not influence the surface dynamics, i.e.,
their influence can be considered a perturbation. Therefore, if the adsorbate motion
is driven by the external force Fe(t), then from (5.50) an average on a canonical
ensemble leads to

〈ẍ(t)〉 + γ〈ẋ(t)〉 = 1

m
Fe(t). (5.51)

Within the framework of the linear response theory, a particular solution of the
corresponding differential equation is written as

〈x̃(t)〉 =
∫ t

−∞
φ(t − s)Fe(s)ds, (5.52)

or, after the time Fourier transform, as

〈x̃(ω)〉 = χ(ω)F̃e(ω). (5.53)

The dynamic susceptibility is written as

χ(ω) = 1

m

1

−ω2 − i γω
, (5.54)
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its time behavior being given by

χ(t) = 2

m γ
e− γ t/2 sinh(γ t/2)Θ(t), (5.55)

where Θ(t) is the step function due to causality. This expression, valid for both the
classical and quantum case, is exact whenever an Ohmic friction γ is assumed and
any direction given by ΔK is considered.

In the Heisenberg representation, (5.50) still holds, its formal solution being

R(t) = R(0)+ P(0)
m γ

Φ(γ t)+ 1

m γ

∫ t

0
Φ(γ t − γ t ′)δN(t ′)dt ′, (5.56)

where P(0) is the initial adparticle momentum operator and Φ(x) = 1 − e−x .

The commutator between R(0) and R(t) is obtained from (5.56), which yields a
c-number. Then, assuming a classical noise as previously mentioned (for quantum
noise, the corresponding commutator is also a c-number since the noise function
only depends on the initial position of the adsorbate, see Eq. (2.78) of Chap. 2 and
Ref. [3]), the factor I1 can be expressed as a time dependent phase

I1(ΔK, t) = exp

[
i�ΔK2

2 γ m
Φ(γ t)

]
= exp

[
i Er

�

Φ(γ t)
γ

]
, (5.57)

where Er = �
2ΔK2/2m is the adsorbate recoil energy. As is apparent, the argument

of the exponential function becomes less important as the adparticle mass and the
total friction increase. The time-dependence only comes fromΦ(γ t). At short times
(� �β), Φ(γ t) ≈ γ t and the argument of I1 becomes independent of the total
friction, thus increasing linearly with time. On the other hand, in the asymptotic time
limit, this argument approaches a constant phase.

The I2 factor can be evaluated as follows. The fluctuation-dissipation theorem
allows us to express the equilibrium position autocorrelation function, Cx (t) =
〈x(t)x(0)〉, in terms of the imaginary part of the dynamic susceptibility and, after
Fourier transforming,

Cx (t) = �

πm

∫ +∞
−∞

γω

ω4 + γ2ω2

e−iωt

1− e−β�ω
dω. (5.58)

From the relations

1

1− e−β�ω
= 1

2
+ 1

2
coth (β�ω/2) , (5.59a)

coth(β�ω/2) = 2

β�ω

(
1+ 2

∞∑
n=1

ω2

ν2
n + ω2

)
, (5.59b)

http://dx.doi.org/10.1007/978-3-642-18092-7_2
http://dx.doi.org/10.1007/978-3-642-18092-7_2
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where

νn = 2πn

�β
(5.60)

are the so-called Matsubara frequencies [82], the correlation function can be split
up into its symmetric and antisymmetric parts, Cx (t)= Sx (t) + i Ax (t). For t > 0,
these functions read as

Sx (t) = − 1

mβ γ

(
t sign{t} + 1

γ
e− γ t

)
+ 2

βm

∞∑
n=1

(
γ e−νn t − νne− γ t

νn(γ2 − ν2
n )

)
, (5.61a)

Ax (t) = − �

2 γ m

(
1− e− γ t) , (5.61b)

which can be trivially related to (5.55) through the fluctuation–dissipation theorem.
In (5.61a), the sign function of the real number t is defined as being +1 for t > 0
and −1 for t < 0. Now, since

Cv(t) = − d2

dt2 Cx (t), (5.62)

then

Cv(t) =
(

1

βm
− i� γ

2m

)
e− γ t − 2 γ

βm

∞∑
n=1

νne−νn t − γ e− γ t

γ2 − ν2
n

, (5.63)

with the real part being identical to the corresponding classical expression except
for the infinite sum of Matsubara frequencies. Quantum effects are important at low
surface temperatures, the long time behavior being mainly determined by the first
term of the Matsubara series. In such cases, relaxation is no longer governed only by
the damping constant [3]. Substituting now (5.63) into (5.49), the I2 factor is finally
obtained,

I2(ΔK, t) = e−ΔK 2[ f (t)+g(t)], (5.64)

where the time-dependent functions f (t) and g(t) are given by

f (t) =
(

1

mβγ2 −
i�

2m γ

)
[e− γ t + γ t − 1], (5.65a)

g(t) = 2

mβ

∞∑
n=1

νne− γ t − γ e−νn t + γ−νn

νn(γ2 − ν2
n )

. (5.65b)
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The total intermediate scattering function (5.48) can then be expressed as

I (ΔK, t) = e−χ2[α∗ γ t−Φ(γ t)]e−ΔK2g(t), (5.66)

with χ = ΔK2〈v2
0〉/γ2 and α = 1 + i�β γ /2, the thermal square velocity being

〈v2
0〉 = 1/mβ. The recoil energy is included in the imaginary part of the product

χ2α∗, which disappears when � → 0. Equation (5.66) is the generalization of the
intermediate scattering function for the quantum motion of non-interacting adsor-
bates in a flat surface. The dependence of this function on ΔK2 through the shape
parameterχ is the same as in the classical theory [78]. No previous information about
the velocity autocorrelation function is needed. However, classically, the interme-
diate scattering function is usually obtained from Doob’s theorem, which states that
the velocity autocorrelation function for a Gaussian, Markovian stationary process
decays exponentially with time. The ballistic or free-diffusion regime and the diffu-
sive regime are apparent from (5.66). The first one is dominant at very low times,
γ t � 1, and the second one at very long times, γ t � 1.

The diffusion coefficient can be obtained from the real part of the expression

D = lim
t→∞

∫ t

0
Cv(t

′)dt ′, (5.67)

which renders

D = kB T

m γ
, (5.68)

and coincides with Einstein’s law for the classical case (ensuring that the adpar-
ticle velocity distribution becomes Maxwellian asymptotically). The same result
is reached from the MSD, 〈[R(t) − R(0)]2〉, which takes into account only the
symmetric part of the position autocorrelation function. Quantum fluctuations (in
terms of the Matsubara frequencies) do not affect this result at low temperatures
except the time limit to which the MSD is linear with time may become very
large. At zero temperature, D is also zero and the MSD is no longer linear with
time. The infinite sum of Matsubara frequencies determines now the long time limit
behavior. As previously mentioned, the limit to zero surface temperature is question-
able if the correlation between the noise and the coordinate system is neglected in
the commutator. These issues will be discussed in more detail in Volume 2. Diffu-
sion has also been treated quantum-mechanically from the viewpoint of Kramers’
theory [74].

The harmonic model is an appropriate working model to understand the bound
motion inside the wells of a corrugated surface. This motion comes precisely from
the oscillating behavior undergone by the adparticle when the diffusive motion is
temporarily frustrated. Now, the dynamic susceptibility will be that of an adparticle
subject to a one-dimensional harmonic potential

χ(ω) = 1

m

1

−ω2 − i γω + ω2
0

, (5.69)
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where ω0 is the frequency of the harmonic oscillator. This expression is again exact
whenever an Ohmic friction γ is assumed and valid for both the classical and quantum
cases. Thus, consider the formal solution of (5.47),

R(t) = R(0)+P(0)
m γ

Φ(γ t)+ 1

m γ

∫ t

0
Φ(γ t−γ t ′)[F(R(t ′))+δNG(t

′)]dt ′, (5.70)

where the force F is given by Hooke’s law, P(0) is the initial adparticle momentum
operator. The presence of the adiabatic force introduces an additional commutator,
[R(0),F(R(t))] = i�∂F(R(t))/∂P(0), where the dependence of the adiabatic force
on the initial state (R(0),P(0)) comes through R(t), which is negligible in a quantum
Markovian framework. The factor I1 is thus the same as for a flat surface, given
by (5.57). On the other hand, in order to obtain the I2 factor, one needs to start
again from (5.47). The dynamic susceptibility is also given by (5.69) and its time
behavior by

χ(t) = 1

mω̄
e− γ t/2 sin ω̄t Θ(t), (5.71)

where Θ(t) is again the step function due to causality and

ω̄ =
√
ω2

0 −
γ2

4
. (5.72)

According to the fluctuation-dissipation theorem, as before, the equilibrium position
autocorrelation function can be expressed as

Cx (t) = �

πm

∫ +∞
−∞

γω

(ω2 − ω2
0)

2 + γ2ω2

e−iωt

1− e−β�ω
dω. (5.73)

For t > 0, the symmetric and antisymmetric parts of (5.73) read as

Sx (t) = e− γ t/2

mβω̄ω2
0

[ω̄ cos ω̄t + (γ /2) sin ω̄t] − 2

βm

∞∑
n=1

[
e−νn t

(γ /2− νn)2 + ω̄2

]
,

(5.74a)

Ax (t) = − �

2mω̄
e− γ t/2 sin ω̄t, (5.74b)

respectively, and the velocity autocorrelation function, as

Cv(t) = ω0

mβω̄
e− γ t/2 cos(ω̄t + δ1)− i�ω2

0

2mω̄
e− γ t/2 cos(ω̄t + δ2)

+ 2

βm

∞∑
n=1

ν2
n e−νn t

(γ /2− νn)2 − ω̄2 , (5.75)
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with tan δ2 = γ ω̄/ω2
0. Again, the real part is the same as in the classical case except

for the presence of the Matsubara series. The same considerations about the surface
temperature in the quantum regime can be mentioned as before. Thus, the I2 factor
is again expressed as in (5.64), but where

f (t) = t

mβω̄
e− γ t/2 sin ω̄t + 2

βm

∞∑
n=1

ν2
n e−νn t

(γ /2− νn)2 − ω̄2

+ i�t

2m
e− γ t/2

[
(1− γ2/ω2

0)(e
γ t/2 − cos ω̄t)+ γ3 − 3 γω2

0

2ω0ω̄
sin ω̄t

]
,

(5.76a)

g(t) = 1

mβω2
0ω̄

{
ω̄ − e− γ t/2[ω̄ cos ω̄t + (ω2

0t + γ /2) sin ω̄t]
}

− 2

βm

∞∑
n=1

1− e−νn t (νnt + 1)

(γ /2− νn)2 − ω̄2 +
i�ω2

0

2mω̄
[g0 + g1(t)+ g2(t)] , (5.76b)

with

g0 = ω̄ γ

4ω7
0

(
γ3 + 2ω0γ

2 − 2ω2
0 γ−4ω3

0

)
, (5.77a)

g1(t) = e−γt/2

ω6
0

[
ω̄ω2

0(ω
2
0 − γ2)t + 2ω2

0 γ ω̄ − γ3ω̄
]

cos ω̄t, (5.77b)

g2(t) = e−γt/2

ω6
0

[
(γ /2)ω2

0(3ω
2
0 − γ2)t + 4ω2

0γ
2 − ω4

0 − γ4/2
]

sin ω̄t. (5.77c)

The total intermediate scattering function will then be the product of the factors I1 and
I2 given by (5.57) and (5.64), taking into account (5.76a) and (5.76b), respectively.
Dephasing can be considered if anharmonic terms are included [78].

When the coverage of the surface is increased, adsorbates can no longer be consid-
ered isolated on the surface and they start interacting through multiple collisions
while diffusing. At intermediate coverages (around 10%), a two bath model has been
recently proposed [78, 83]. This gives rise to two frictions, one due to the phonon
motion (γ) and the other to the collisional friction among adsorbates (λ). If the corre-
sponding noise functions are uncorrelated, a total friction η = γ+λ is obtained and
the previous theoretical treatment can be straightforwardly generalized to interacting
adsorbates by replacing γ by η.
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5.3.2 Path Integral Formulation: Propagators

Feynman’s path integral approach to quantum mechanics [84–86] deals with quantum
fluctuations around classical paths. As seen in Sect. 3.4, this formulation is free of
operators and needs the Lagrangian function for the construction of the quantum prop-
agator. The non-uniqueness of Lagrangians leads this approach to provide different
results for a given physical problem. In the quantization procedure, one finds addi-
tionally the ambiguity arising from the ordering of the dynamical variables that define
the studied physical process.

Consider the path integral representation for the propagator (3.117),

K [q f , t; q0, t0] =
∫ q f

q0

ei S[q]/�Dq, (5.78)

going from the initial position q0 at t0 to the final position q f at t f along the path
q(t). In (5.78), the classical action S[q] is a functional of the path q(t) through the
classical Lagrangian L(q, q̇, t),

S[q] =
∫ t

t0
L(q, q̇, t ′)dt ′. (5.79)

The symbol D indicates us that the integration is not carried out over an interval
but over all paths satisfying the boundary conditions. A general path consists of a
classical path plus a fluctuation part which vanishes at the initial and final time. The
classical path (one or more) corresponds to a stationary point of the action. This path
is the only one which survives in the classical limit, �→ 0. The first quantum correc-
tion comes from the quadratic term when the action is expanded in the fluctuations.
For the free particle and the harmonic oscillator, the corresponding expansion breaks
off after the second term, thus resulting that both cases are exact in this formulation.
The semiclassical approximation is obtained when stopping in the quadratic term.
This approach tries to explain quantum phenomena in terms of classical concepts.
Real-time propagators can be split up into two types depending on whether one
solves a boundary value problem, such as the Van Vleck–Gutzwiller propagator, or
an easier initial value problem, such as the Herman–Kluk or initial value represen-
tation propagator [62]. Recently, it has been formulated [87] a correction operator
formalism in terms of an asymptotic series, where the first term gives the Herman–
Kluk propagator.

When dealing with dissipative systems, Feynman’s approach usually starts from
the density matrix due to the involvement of mixed states. Here, only the main steps
will be accounted for, finding the interested reader further analyses in the related
literature [3, 88–90]. Thus, consider the canonical density matrix is written as

ρ = 1

Z
e−βH , (5.80)

http://dx.doi.org/10.1007/978-3-642-18092-7_3
http://dx.doi.org/10.1007/978-3-642-18092-7_3
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where Z = Tr[e−βH ] is the partition function. Then, the corresponding (imaginary
time) path integral representation is [3, 88, 90]

ρ(q, q ′) = 1

Z

∫ q ′

q
Dq̄e−SE [q̄]/�. (5.81)

Here, temperature is interpreted as an imaginary time, t = − i�β, i.e., a Wick rota-
tion. The boundary conditions are given by q̄(0)= q ′ and q̄(�β)= q and SE is the
so-called Euclidean action, where the motion takes place in the inverted potential (see
Chap. 2). Furthermore, the partition function in the same representation is written as

Z =
∮

Dq̄e−SE [q̄]/� (5.82)

for all closed paths q(0) = q(�β).
The removal of the bath degrees of freedom when, for example, a Caldeira–Leggett

Hamiltonian is assumed, leads to the so-called influence functional for the reduced
density matrix,

ρ(q, q ′) = 1

Z

∫ q ′

q
Dq̄ei SE [q̄]/�F[q̄], (5.83)

which contains all the information concerning the influence of the heat bath on the
system. As can be shown, such an influence may be taken into account by adding a
nonlocal contribution to the action [90].

Tunneling with dissipation has played a very important role in this formulation
at a fundamental and an applied level; in particular, at low temperatures and weak
frictions where the quantum regime dominates. Caldeira and Leggett developed [60]
path integral techniques to adapt a thermodynamical approach following Langer
ideas [91] to calculate escape rates. This method is based on the calculation of the
imaginary part of the free energy, since it is related to the corresponding rates. The
close orbits necessary to compute partition functions are obtained from orbits called
bounces which reflect the onset of incoherent quantum tunneling [62]. A similar
technique but for coherent tunneling is the so-called instanton orbit technique. For
a treatment of real-time dynamics of open quantum systems, see, for example, [92].
Driven tunneling has also been studied with the Markov–Floquet theory, applying the
path-integral formulation, by Grifoni and Hänggi [93]. In open quantum systems, it
is also worth mentioning that numerical path integral techniques have also been very
much developed to deal with more complex physical processes [94]. Simulations
based on quantum Monte Carlo methods at very low temperatures and, therefore,
long times are prohibitive.

http://dx.doi.org/10.1007/978-3-642-18092-7_2
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5.3.3 Markovian Master Equations: The Linblad Equation

In problems involving dissipation one always tries to find master equations accounting
only for the system dynamics in order to neglect the details of the bath dynamics.
These master equations usually describe the time-evolution of the reduced density
matrix which is obtained once the trace over the bath coordinates of the full density
matrix is carried out. Among this type of equations of motion, the simplest class is
the Markovian one in which it is assumed the bath has no memory. These theories
have been widely reviewed in articles and books during the last 20 years; a number of
them can be found at the end of this chapter. In particular, two approaches are worth
mentioning, namely the phase approach (through the Wigner distribution) [11] and
the unified semiclassical approach to the density matrix [62] for dissipative systems,
since they deal with classical entities.

For any theory of quantum dissipation to be fully satisfactory the reduced density
matrix should fulfill the following properties [11]:

1. It should approach an appropriate equilibrium state (the canonical equilibrium
state) at long times.

2. It should satisfy the principle of translational invariance (i.e., coordinate-
independent frictional forces are required, as happens with classical Brownian
motion).

3. It should remain positive semidefinite (no negative eigenvalues) at any time.

However, it turns out that no Markovian theory can fulfill these three criteria at
the same time except for very special cases. The three criteria were proved by
Lindblad [95, 96] to be numerically exclusive for the specific case of the harmonic
oscillator, although it can be conjectured that they are quite generally exclusive for
any Markovian dynamics. Hence, quantum Markovian approaches can be classi-
fied, in principle, according to which criterion one chooses to sacrifice. In general,
whenever a non-Markovian approach must be adopted, it leads to a loss of analyt-
ical and conceptual simplicity as well as larger computational times. In such cases,
projection operator techniques, such as the well-known Nakajima–Zwanzig and time-
convolutionless techniques [2], are widely used. The generalized quantum Langevin
formulation is also used in non-Markovian treatments.

Markovian approaches, on the other hand, are much simpler and, according to
the differential Chapman–Kolmogorov equation of classical probability theory (see
Appendix B), the quantum dynamical semigroup gives rise to a first order differential
equation for the reduced density matrix also known as the Linblad master equation
[95, 96]. The starting point is the quantum Liouville equation

dρ(t)

dt
= L(t)ρ(t), (5.84)

whereL is the Liouville superoperator (see Chap. 2). If the reduced system (S) density
operatorρS = TrB[ρ] is obtained by tracing out over the bath (B) degrees of freedom,

http://dx.doi.org/10.1007/978-3-642-18092-7_2
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(5.84) is replaced by

dρS(t)

dt
= LρS(t). (5.85)

The Liouville superoperator can be seen as the generator of the semigroup expressed
in exponential form, as

V (t) = eLt , (5.86)

where the only explicit time-dependence comes through the argument; the generator
is time-independent. This dynamical map describes the state change of the reduced
system with time (t ≥ 0),

ρS(t) = V (t)ρS(0), (5.87)

which is a convex-linear, completely positive and trace-preserving quantum operation
[2]. The one-parameter family {V (t)/t ≥ 0} displays the semigroup property,

V (t1)V (t2) = V (t1 + t2), (5.88)

with t1, t2 ≥ 0. As shown by Linblad, the most general diagonal form for the gener-
ator of a quantum dynamical semigroup can be written as

LρS = −i[H, ρS]+
N 2−1∑
k=1

γk

(
AkρS A†

k −
1

2
A†

k AkρS − 1

2
ρS A†

k Ak

)
, (5.89)

where the first term describes the unitary part of the dynamics given by the corre-
sponding Hamiltonian, the operators Ak are called the Linblad operators (dimen-
sionless) and γk give the nonnegative eigenvalues playing the role of relaxation rates
for the different modes of the open system. The generator L is in general assumed
to be bounded, though in physical applications this is not always the case [2]. The
sum term in (5.89) is usually known as the dissipator, D(ρS).

If an external time-dependent force is applied to the system, (5.85) can be gener-
alized to

dρS(t)

dt
= L(t)ρS(t), (5.90)

where L(t) is the generator of a quantum dynamical semigroup for each fixed
t ≥ 0. The corresponding propagator is defined as

V (t, t0) ≡ Toe
∫ t

t0
dsL(s)

, (5.91)
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where To is the time-ordering operator, which orders products of time-dependent
operators such that their arguments increase from right to left [2]. Then, the corre-
sponding semigroup property reads now as

V (t, t1)V (t1, t0) = V (t, t0). (5.92)

The time-evolution of the reduced density operator is necessary to calculate multi-
time correlation functions of observables or, in general, of operators.

For other non-Markovian master equation models which go beyond the scope of
this monograph, such as the Nakajima–Zwanzig equation, the interested reader may
consult the related literature [3, 5].

5.3.4 Stochastic Approaches: Quantum Trajectories

If the wave function or state vector is considered as a stochastic process (see
Appendix B) in Hilbert space, the corresponding formulation is given in terms of
a time-dependent density functional P[Ψ, t]. The expectation value of the reduced
density operator is then expressed as ρS = E{|Ψ (t)〉〈Ψ (t)|} and the dynamics is no
longer described by a master equation, but a stochastic differential equation. This
procedure is called the unravelling of the master equation. According to Carmichael
[97], the realizations of the underlying stochastic process are called quantum trajec-
tories3 and the transition from a state Ψ to a Ψ ′ state, a quantum jump. The Linblad
equation leads to a close connection between the quantum dynamical semigroup
and the piecewise deterministic process in Hilbert space. This connection is not
unique and the stochastic representation is also related to the continuous measure-
ment process [2]. A path integral procedure can also be carried out in this Hilbert
space different from the Feynman–Vernon path integral, which consists of a sum
over paths Ψ (t) with their corresponding weights [2].

In the diffusion limit of the Liouville master equation, a Fokker–Planck equation
for the probability density functional exists which, in turn, is equivalent to a stochastic
Schrödinger equation in Itô form [98, 99] for one Linblad operator,

dΨ (t) = −i K [Ψ (t)] dt +√γ0 M[Ψ (t)] dW (t), (5.93)

where K is the nonlinear drift operator and γ0 the relaxation time. The nonlinear
operator M is related to the first-order fluctuation (noise operator) of the Linblad
operator, i.e., A = I + εC , with I being the identity operator, ε a real small number
and C an operator. From this time-evolution, multi-time correlation functions through

3 This type of quantum trajectories must not be confused with Bohmian trajectories (see Chap. 6),
which are also regarded as quantum or causal trajectories. Here, the concept refers to the time series
or realization associated with a given observable, i.e., it is synonymous of stochastic trajectory (see
Sect. B.2 of Appendix B).

http://dx.doi.org/10.1007/978-3-642-18092-7_6
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ρS(t) of observables are obtained. This type of stochastic Schrödinger equation has
been proposed by many authors and are known as stochastic collapse models (see,
for example, the quantum state diffusion model [10, 100, 101]). Some numerical
simulation methods to solve (5.93) can be found in [2, 102–104]. For example,
Strunz [105] has studied the Brownian dynamics of a parametric oscillator in a
Markovian and non-Markovian regime. The non-Markovian dynamics is nowadays
developing very fast with potential applications to quantum computation, quantum
metrology, etc [106, 107, 108]. It is also worth mentioning that in (5.93) the noise
is multiplicative, since the coefficient accompanying dW (t) is not a constant but
it depends on the wave function. As mentioned in Chap. 2, this noise can induce
transitions, namely noise induced transitions [109].

To conclude this Section, it is also worth mentioning Wang’s proposal [28] of a
new stochastic approach to quantum mechanics in complex space. This approach is
based on the concept of weak value of a given observable, as defined above. The
real part of the trajectory associated with the corresponding stochastic process (weak
trajectory) is interpreted as the trajectory of a particle in real configuration space,
reducing to the correct classical stochastic trajectory when the de Broglie wavelength
vanishes.
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Chapter 6
Quantum Mechanics with Trajectories

6.1 Introduction

According to the conventional view of quantum mechanics, the most complete infor-
mation about a quantum system is specified by the wave function. As seen in Chap. 3,
the wave function provides us with a probabilistic or statistical description [1] of the
possible outcomes that can be obtained when a measurement on a property of such
a system is carried out. This viewpoint has constituted the center of a longstanding
debate around the so-called completeness of the wave function and the quantum
theory of measurement [2]. In order to render some light on this issue, different
hidden-variable theories and models have been proposed in the literature [3, 4].

As stated by von Neumann [5], quantum mechanics or any alternative theory
cannot be derived by considering a statistical approximation from a classical-like
deterministic theory. This result, enunciated in the form of a theorem, constitutes
an important benchmark to discern whether a hidden-variable model can be or not
considered a serious alternative to the standard quantum mechanics. However, this
theorem contains an also important conceptual drawback: it only applies to local
models, as shown in 1952 by Bohm [6, 7], proven mathematically in the 1964 by
Bell [8, 9] and verified experimentally in 1981 by Aspect et al. [10–12]. The model
developed by David Bohm [6], nowadays known as Bohmian mechanics, was essen-
tially based on assuming that a quantum system consists, at the same time, of a
wave and a particle. The wave evolves according to Schrödinger’s equation and the
particle moves according to a certain guidance condition, which makes the particle
motion dependent on the wave evolution, giving rise to quantum trajectories (not to
be confused with the same terminology used in quantum stochastic theories seen in
Chap. 5). Though Bohmian mechanics is usually regarded as a “reinterpretation” or
an alternative picture of standard quantum mechanics, referring to it as a “theory” is
also common in order to stress the conceptual difference between the two approaches
to the microscopic world—i.e., it emphasizes Bohmian mechanics is a “quantum
theory of motion”, quoting Holland’s book title on the subject [13].
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Bohm’s ideas were applied to different prototypical models of quantum mechanics
[13] during the late 1970s and particularly the 1980s and early 1990s. However,
in the last 10 years, Bohmian mechanics has passed from being a mere way to
formulate a quantum mechanics “without observers” [14, 15] to become a well-
known (and increasingly accepted) theoretical framework used as a source for new
quantum computational methods as well as quantum interpretations [16–18]. These
two aspects of Bohmian mechanics are what Wyatt [16] has called the synthetic
and analytic approaches of this theory. The first approach essentially starts with
the former numerical schemes developed to obtain quantum information without
solving Schrödinger’s equation, but its equivalent Bohmian counterparts [19–24].
Since then, this computational branch of Bohmian mechanics has diversified into
a myriad of numerical approaches (see Volume 2), which can be summarized by
the type of answer they try to give. For example, for wave packet propagation,
different Lagrangian, Eulerian and combined Eulerian-Lagrangian algorithms have
been developed [19–30]; also semiclassical initial value representation schemes
based on Bohmian mechanics have been implemented [31–35]. The purpose of
avoiding and, therefore, solving the so-called nodal problem has led to schemes
such as the bipolar ansatz [36–39], the covering function [40] or a mixed wave
function representation [41]. In order to cope with the problem of the coupling
between quantum and classical degrees of freedom in multidimensional problems,
hybrid Bohmian-based quantum-classical approaches have been developed [42–51];
and also, to deal with systems described by a large number of degrees of freedom,
schemes based on linearizing the quantum force have been implemented [52–55].
The starting point for the second approach, on the other hand, based on obtaining the
quantum trajectories on the fly from the wave function as a tool to interpret realistic
experiments, can be established in the former studies of rare gas atom diffraction by
metal surfaces [56, 57]. In Volume 2, different applications will be analyzed within
this approach in more detail.

Many different studies have appeared in the literature ever since dealing with
one or the other approach, or even both. This has given rise to a rich literature,
different from the formerly developed, where Bohmian mechanics was applied to
different academic [13], well-known paradigms of quantum mechanics [17, 18].
The reason for this is very simple, arising from a nice appealing feature: Bohmian
mechanics allows us to understand and explain quantum systems in terms of the
motion displayed (in configuration space) by a swarm of quantum trajectories. Each
one of these trajectories represents the evolution in time of a particular initial state
specified by a point on the configuration space associated with the system. Thus,
unlike standard quantum mechanics, where the wave function determines the state
of the system on the whole available configuration space, in Bohmian mechanics it
is possible to follow one particular point of such a space. The time-evolution of this
point is given according to some prescribed quantum laws of motion, as will be seen
below, and the evolution of the trajectory ensemble is equivalent to the evolution
of a quantum flow—this is precisely the viewpoint of quantum hydrodynamics.
The Bohmian view, nevertheless, does not invalidate at all other ways to understand
quantum systems; it only allows us to think of them on similar grounds as classical



6.1 Introduction 189

ones, i.e., using a similar intuitive scheme, which differs from a purely classical
one precisely in the types of motion one can observe. However, unlike any classical
approach to quantum mechanics, Bohmian mechanics is not an approximated theory,
but an exact one, as is shown below.

6.2 Bohmian Mechanics

6.2.1 Fundamentals

In Bohmian mechanics the description of quantum systems is carried out in terms
of waves and quantum trajectories. The wave function Ψ provides with the dynam-
ical information about the whole available configuration space to quantum particles
(whatever these particles are or represent; see Sect. 6.6), which will evolve accord-
ingly as if they are “guided”—in this way, the quantum motion displayed by particles
reflects the evolution of the wave function. The fundamental Bohmian equations of
motion are usually derived from the standard version of quantum mechanics through
the transformation (Ψ,Ψ ∗) → (ρ, S), where Ψ and Ψ ∗ are generally complex-
valued functions of the position (r) and time (t), and ρ and S are real-valued func-
tions of the same variables. More explicitly, the transformation relation between both
types of functions (or fields) for a particle of mass m is given by

Ψ (r, t) = ρ1/2(r, t)ei S(r,t)/� (6.1)

(and its complex conjugate). After introducing (6.1) into the time-dependent
Schrödinger equation, two real coupled partial differential equations are obtained,

∂ρ

∂t
+ 1

m
∇(ρ∇S) = 0, (6.2a)

∂S

∂t
+ (∇S)2

2m
+ Veff = 0, (6.2b)

which come from the imaginary and real parts, respectively, of the resulting equation.
The former is the continuity equation, which accounts for the probability conserva-
tion, while the latter is the quantum Hamilton–Jacobi equation, with

Veff(r, t) = V (r)− �
2

2m

∇2ρ1/2(r, t)

ρ1/2(r, t)
(6.3)

being an effective total potential. The last term in the right-hand side of (6.3) is the
so-called quantum potential,
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Q ≡ − �
2

2m

∇2ρ1/2

ρ1/2 = �
2

4m

[
1

2

(∇ρ
ρ

)2

− ∇
2ρ

ρ

]
, (6.4)

which, as well as ρ, depends on both r and t. This term is regarded as a potential
because, like V, it also rules the quantum particle dynamics. However, its nature is
fully quantum-mechanical due to its dependence on the quantum state via ρ. Note
that, since, statistically, ρ describes the evolution of a swarm of identical non inter-
acting particles, the dependence of Q on ρ means that the dynamics of a single
particle from the swarm is going to be influenced by the behavior of the other.
That is, quantum particle dynamics are nonlocal. Rather than being a particular
feature of Bohmian mechanics, this property is inherent to quantum mechanics in
general, which manifests through the kinetic operator, K̂ = −(�2/2m)∇2, in its stan-
dard version. It is well-known that, from a computational viewpoint (see Volume 2),
in order to evaluate the action of K̂ accurately, one has to consider a very good repre-
sentation of it1. In this other sense, since Q arises from the action of this operator on
Ψ after considering (6.1), i.e.,

K̂Ψ = − �
2

2m
∇2Ψ = (∇S)2

2m
− �

2

2m

∇2ρ1/2

ρ1/2 , (6.5)

it could also be associated with a sort of nonlocal kinetic energy [13]. Nonlocality
only disappears when Q ≡ 0. Then, the particle dynamics becomes fully classical.

Just as an illustration, in Fig. 6.1 the quantum potential acting on the quantum
trajectories in a typical problem in diffraction by periodic surfaces (see Volume 2)
is displayed. In particular, from bottom to top, Veff (left-hand side) and a contour-
plot of it (right-hand side) are represented as evolving along the z-coordinate (which
is proportional to time since the advance of the wave function is along this direc-
tion) at three different distances from the physical surface [56, 58, 59]: the near-
field or Fresnel region (bottom panels), the transition region (central panels) and the
far-field or Franhofer region (top panels). In the particular case illustrated, the clas-
sical interaction potential becomes negligible at about 12 Å from the surface and,
therefore in the three regions displayed Veff ≈ Q. Taking this into account, notice
how from a very intricate structure Q evolves gradually towards a much smoother
potential consisting of alternating “canyons” and “plateaus”, this giving rise to the
well-known Bragg diffraction directions, along which quantum trajectories move
asymptotically. Nevertheless, since the outgoing wave function consists of maxima
corresponding to the Bragg direction plus a collection of secondary minima among

1 For example, when trying to solve the time-dependent Schrödinger equation by means of standard
grid methods, K has to receive a special consideration. In order to avoid truncations of its nonlocal
nature, the action of the kinetic operator is assumed in the momentum space (by means of the fast
Fourier transform technique, for example), where this operator is local. Then, after acting on Ψ ,
the result (which is already affected by the value of Ψ in all points of the grid) is put back in the
configuration space.
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Fig. 6.1 Quantum potential ruling the quantum trajectory dynamics in a typical problem of diffrac-
tion by a periodic surface [56, 58, 59]. From bottom to top, evolution of Veff (left) and a contour-
plot representation of it (right) along the z-coordinate (the surface is parallel to the x-axis) at three
distances from the physical surface: the near-field or Fresnel region (bottom panels), the transition
region (central panels) and the far-field or Franhofer region (top panels)
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them (due to the finiteness of the incident wave), the presence of valleys associated
with them is also observable. However, unless the Bragg valleys, the second-order
ones are higher in energy on average and the canyons separating two of them are
much deeper. In other words, making use again of the “geological” analogy, between
two consecutive Bragg valleys there is always a sort of mountain range acting as a
barrier (this is specially apparent in the cuts of Veff along the x-axis, for constant z,
in the central and top left-hand side panels).

Since (6.2b) is a (quantum) Hamilton–Jacobi equation, paths along which quantum
particles travel may be defined according to the guidance condition

v = ∇S

m
= �

2im

[∇Ψ
Ψ
− ∇Ψ

∗

Ψ ∗

]
, (6.6)

where ṙ = v, in analogy to classical mechanics. Equations (6.2) and (6.6) form
a closed set of coupled equations, which describes the evolution of a swarm of
identical particles under the “guidance” of the quantum state at each time. As will
be seen in Volume 2, different numerical techniques have been suggested in the
literature [16] to solve this set of equations, which is analogous to those that describe
the evolution of classical hydrodynamical flows. Because of this similarity, indepen-
dently of the particular method considered, two schemes are basically followed. One
is the Eulerian scheme [60], where the importance relies on the full quantum fluid
rather than in the particular trajectory dynamics. Equations (6.2) are then integrated
directly with the aid of the velocity field, ∇S, but with no need to obtain any partic-
ular trajectory. Alternatively, taking advantage of (6.6), one can also work following
a Lagrangian scheme, i.e., considering a framework co-moving with the (quantum)
fluid [along particular trajectories x(t)]. This is the typical scheme considered in
order to benefit from the computational advantages of quantum trajectories (either
real or complex). In this case, in principle, it is also possible to utilize two equations:
(6.2b), which provides information about the quantum flux along a particular trajec-
tory, and (6.6), which will define the particle trajectory. Thus, the first step is to pass
from the Eulerian framework to the Lagrangian one by means of the well-known
time derivative or Lagrangian operator,

d

dt
= ∂

∂t
+ v · ∇, (6.7)

where v is given by (6.6). After using this operator, (6.2b) becomes

d S

dt
= 1

2
mv2 − Veff , (6.8)

where, as in classical mechanics, the time-derivative of the quantum action S is equal
to a generalized quantum Lagrangian,

S[r(t)] − S[r(0)] =
∫ t

0
LQ
[
r(t ′)

]
dt ′, (6.9)
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with LQ ≡ mv2/2 − Veff . Thus, solving this equation together with (6.6) will give
us the full dynamics associated with the corresponding quantum system within the
Bohmian context. Note that in standard quantum mechanics the system dynamics is
only described byΨ.However, in Bohmian mechanics, one focusses on the particular
evolution in time of a given initial system configuration (initial condition), which
gives rise to the corresponding Bohmian trajectory. This evolution, though, is strongly
determined by the wave function, which acts like a field (apart from any other external
field, described by the potential V ), prescribing the way how a certain system config-
uration should evolve. In classical mechanics something similar can be found when
going to phase space, although the evolution of the system phase–space configuration
is only determined by the external fields.

As it can be inferred from (6.8), in the Lagrangian scheme it is also necessary
the evaluation of the quantum potential along the trajectory. However, instead of
integrating the continuity equation to obtain ρ(t), one can alternatively proceed as in
semiclassical mechanics [61] assuming that the solution of (6.2a) along the Bohmian
trajectory r(t) is given by

ρ[r(t)] =
⏐⏐⏐⏐∂r(0)
∂r(t)

⏐⏐⏐⏐ ρ[r(0)]. (6.10)

This procedure has been used with practical computational purposes in the literature
[31–35], with the aim to apply Bohmian mechanics as a sort of quantum initial value
representation numerical approach. Substituting (6.10) into (6.4), one finds

Q[r(t)] = �
2

4m

[
∂r(0)
∂r(t)

]2
{

1

2

[∇r(0)ρ[r(0)]
ρ[r(0)]

]2

− ∇
2
r(0)ρ[r(0)]
ρ[r(0)]

}
, (6.11)

where ∇r(0) ≡ ∂/∂r(0) is the action of the ∇-operator evaluated at r(0). In this
way, ρ[r(t)] and Q[r(0)] can be both determined from ρ[r(0)]. On the other hand,
ρ(r, t) can be obtained by sampling the initial probability density with a sufficient
number of initial conditions (trajectories). Of course, the numerical evaluation of the
derivatives of ρ within this Lagrangian framework can lead to instabilities that will
destroy the stability of the method, as also happens in classical hydrodynamics, due
to the particle approaching nodal (vortical) regions. Some alternative methods have
been proposed in the literature to solve these drawbacks [36, 40, 41].

Within the Lagrangian scheme, the trajectories are calculated one by one, obtaining
ρ and S (and, therefore,Ψ ) along them. Hence, from a computational viewpoint, this
can be regarded as a “local” calculation. However, it is important to stress that this
locality has nothing to do with the nonlocal dynamical behavior mentioned above.
Note that the information related to the whole ensemble (though evaluated along one
particular path) appears in a very precise and unambiguous manner in Veff , as seen
in (6.8), and influences the field S. Thus, it is always very important to distinguish
between the locality of the calculations and the nonlocality inherent to the dynamical
behavior of quantum particles [62].

As seen in Chap. 3, the wave formulation of quantum mechanics can be derived
from the (quantum) Lagrangian density [13, 63],

http://dx.doi.org/10.1007/978-3-642-18092-7_3
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Lq = i�

2

(
Ψ ∗ ∂Ψ

∂t
− ∂Ψ

∗

∂t
Ψ

)
− �

2

2
∇Ψ · ∇Ψ ∗ − V |Ψ |2, (6.12)

when the corresponding integral is required to be stationary with respect to variations
in the complex-valued field variablesΨ andΨ ∗.Then, when variations are taken with
respect to Ψ ∗, the Euler–Lagrange equations yield the time-dependent Schrödinger
equation (as well as its complex conjugate when variations are considered with
respect to Ψ ). Similarly, one can also proceed taking into account the polar form
(6.1), which gives rise to the Lagrangian density [64, 65]

Lq = −
[
∂S

∂t
+ 1

2
(∇S)2 + V

]
ρ − �

2

8

(∇ρ
ρ

)2

ρ

= −
[
∂S

∂t
+ 1

2
(∇S)2 + 1

2
(∇K )2 + V

]
ρ, (6.13)

where

K ≡ �

2
ln ρ (6.14)

is a term from which the quantum potential emerges. In this regard, note that it would
be more appropriate to associate this term (and therefore the quantum potential) with
a sort of inner kinetic energy, since Q does not appear explicitly in the Lagrangian
density as the external potential V does. This is in correspondence, for example,
with the fact that the evolution of a wave packet is ruled by two types of motions
[66], one associated with its translation (and, therefore, with∇S) and another with its
spreading (i.e., with∇K ), as will be seen in Volume 2. Furthermore, it is the presence
of this term what makes quantum motion so different from the classical one, as can
be readily seen when (6.13) is compared with its classical counterpart. This analogy
can be better appreciated in Table 6.1.

6.2.2 Expectation Values and Ensemble Averages

Though Bohmian mechanics allows us to describe the evolution of quantum processes
and phenomena in terms of individual trajectories, it is clear that any observable will
require of a statistical treatment of the corresponding quantum trajectories. That is,
any observable will arise as a consequence of the counting of trajectory arrivals at a
certain region, which is much connected with the way how experiments occur. For
example, in a typical diffraction experiment, the diffraction pattern arises by counting
(detecting) individual arrivals [67–71]. Similarly, with Bohmian mechanics one can
reproduce the experiment by counting the arrivals of quantum trajectories [56, 59].
Thus, taking this into account, the statistical nature of quantum mechanics arises in
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Table 6.1 Comparative scheme of the main elements involved in classical and quantum-mechanical
(Bohmian) dynamics

a very natural way, where expectation values are directly associated with average
(ensemble) values.

In order to understand the relationship between the expectation value of a quantum
operator and the statistical Bohmian description, consider Â is a Hermitian operator,
which can be a function of the position and momentum operators, r̂ and p̂ = −i�∇,
i.e., Â = Â(r̂,−i�∇). The expectation value of this operator is defined as

〈 Â〉 = 〈Ψ | Â|Ψ 〉 =
∫
Ψ ∗( ÂΨ )dr∫
Ψ ∗Ψ dr

, (6.15)

where Ψ (r, t) = 〈r|Ψ (t)〉 is the wave function in the system configuration repre-
sentation and

[ ÂΨ ](r, t) ≡ 〈r| Â
(∫
|r′〉〈r′|dr′

)
|Ψ (t)〉 =

∫
Â(r̂, r̂′)Ψ (r′, t)dr′, (6.16)

with Â(r̂, r̂′) ≡ 〈r| Â|r′〉. For Hermitian operators, Â, only its real part has to be
taken into account in the calculation of its expectation value. Hence, (6.15) can be
expressed as

〈 Â〉 =
Re
{∫
Ψ ∗( ÂΨ )dr

}
∫
Ψ ∗Ψ dr

=
∫

Re
{
Ψ ∗( ÂΨ )

}
dr∫

Ψ ∗Ψ dr
. (6.17)

Moreover, one can also consider the quantity
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A ≡
Re
{
Ψ ∗( ÂΨ )

}

Ψ ∗Ψ
(6.18)

to represent the local value of the operator Â, given in terms of the associated field
function A(r, t). In other words, the quantity (6.18) can be interpreted as the property
A for a given particle.

For example, consider the position, momentum and energy operators in the config-
uration representation,

r̂(r, r′) = rδ(r − r′), (6.19a)

p̂(r, r′) = −i� δ(r − r′)∇, (6.19b)

Ĥ(r, r′) = δ(r − r′)
[
− �

2

2m
∇2 + V̂ (r̂)

]
, (6.19c)

respectively. The associated field functions are

r(r, t) = Re
{
Ψ ∗r̂Ψ

}
Ψ ∗Ψ

= r(t), (6.20a)

p(r, t) = Re {Ψ ∗(−i�∇)Ψ }
Ψ ∗Ψ

= ∇S, (6.20b)

E(r, t) =
Re

{
Ψ ∗

(
− �

2

2m
∇2 + V̂

)
Ψ

}

Ψ ∗Ψ
= (∇S)2

2m
+ Veff , (6.20c)

which will provide us with the position, momentum and energy of a Bohmian particle
when they are evaluated along its trajectory. Indeed, in this case, note that (6.20a)
corresponds precisely to the equation of motion (6.6), thus being a solution of (6.20b).

If instead of a particle there is a statistical ensemble of them (or, equivalently,
some set of initial conditions has to be sampled) distributed according to ρ(r, t), the
average value of A can be computed as in classical mechanics (see Sect. 1.4.1),

〈A(t)〉 =
∫
ρ(r, t)A(r, t)dr. (6.21)

Thus, sampling (6.19) over ρ,

r̄ =
∫
ρrdr =

∫
Ψ ∗r̂Ψ dr = 〈r̂〉, (6.22a)

p̄ =
∫
ρ∇Sdr =

∫
Ψ ∗(−i�∇)Ψ dr = 〈p̂〉, (6.22b)

Ē =
∫
ρ

[
(∇S)2

2m
+ Veff

]
dr =

∫
Ψ ∗

[
− �

2

2m
∇2 + V̂

]
Ψ dr = 〈Ĥ〉, (6.22c)

http://dx.doi.org/10.1007/978-3-642-18092-7_1
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which coincide with the corresponding expectation values obtained from standard
quantum mechanics, this showing the equivalence at a predictive level of both
approaches. Obviously, from a trajectory viewpoint, i.e., when the associated local
field functions are evaluated along trajectories, (6.22) read as

r̄B = 1

N

N∑
i=1

wi ri (t), (6.23a)

p̄B = 1

N

N∑
i=1

wi∇S(ri (t)), (6.23b)

ĒB = 1

N

N∑
i=1

wi

{[∇S(ri (t))
]2

2m
+ Veff(ri (t))

}
, (6.23c)

where N is the total number of trajectories considered,wi is the associated weight—if
the trajectories are initially sampled according to ρ0, thenwi = 1 for all trajectories,
otherwise wi ≈ ρ(r(t0)) —and the subscript B means that these average values are
computed from a sampling of Bohmian trajectories. As in classical statistical treat-
ments, provided the sampling of initial conditions is properly carried out according
to some initial distribution function (this role is played here by ρ(0)), in the limit
N → ∞, the quantities (6.23) will correspond with their quantum homologous
(6.22). Taking this into account, one readily notes that the uncertainty principle can
be directly related to a statistical result instead of to an inherent impossibility to
measure positions or momenta—the source for this impossibility would be rather
associated with the way how things happen (interact) at quantum scales. In this
sense, the inequality

�ri�pi ≥ �

2
(6.24)

expresses the relationship between two statistical quantities (in this case, position
and momentum) in quantum mechanics, where

(�ri )
2 = r2

i − ri
2 ≈ r2

B,i − rB,i
2, (6.25a)

(�pi )
2 = p2

i − pi
2 ≈ p2

B,i − pB,i
2, (6.25b)

and i = 1, 2, 3.
It is clear from the above discussion that the role played by time in Bohmian

mechanics and in quantum mechanics differs. Time in the quantum theory is not an
observable, but a parameter, i.e., there is no time operator such that its eigenvalues
provide us with some information, for example, about the time a particle needs to
cross a barrier by tunnel effect, the time of a scattering process or the lifetime of a
resonance phenomenon. Actually, when the time calculated through a given expres-
sion is compared to some experimental data value, things become more troublesome.
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This issue constitutes an important question which has been considered in length in
the literature [72–74], where several definitions of time can be found, such as dwell
time, tunneling time, interaction time, arrival time, etc. This situation changes within
the context of Bohmian mechanics, where the concept of arrival time is unambigu-
ously defined because it is based on the concept of well-defined trajectories. Indeed,
from the guidance condition or the trajectory, just by integration or by inspecting a
graph [13], information about arrival times can be readily obtained with no need for
a time operator. This crucial issue will be treated again in Volume 2, when discussing
quantum processes, such as diffraction, resonance or reactive scattering.

Another very important issue, which also merits special attention, is that of scat-
tering processes within the context of Bohmian mechanics. In particular, scattering
singularities [61, 75], such as resonances, rainbows, glory effect or skipping orbits,
mentioned in Chap. 1, will be discussed in more detail in Volume 2.

6.2.3 Quantum Hydrodynamics

In order to provide an interpretation to quantum mechanics, in 1926 Madelung [76]
formulated what is known nowadays as quantum hydrodynamics, closely related
to Bohmian mechanics. This interpretation is directly connected to some relevant
phenomena in quantum mechanics, such as superconductivity [77] or Bose–Einstein
condensation [78], for example. Furthermore, within chemical physics, it has accom-
modated very advantageously, for it provides an ideal framework to understand and
interpret quantum processes there, from the chemical reactivity in collinear reactions
[79–82] to the understanding of molecular magnetic properties within a framework
encompassing both electronic structure and topology [83–93].

Here, one also starts by considering the wave function in polar form, (6.1), but
focussing on

ρ = R2 = Ψ ∗Ψ, (6.26a)

J = ρv = R2 ∇S

m
, (6.26b)

where ρ(r, t) is the probability density, J(r, t) is the quantum probability current
density and v is the velocity fiel (6.6), which describes the flow of the latter. Taking
this into account, (6.2) can be again expressed as

∂ρ

∂t
+ ∇ · J = 0, (6.27a)

dv
dt
= ∂v
∂t
+ (v · ∇)v = − 1

m
∇(V + Q), (6.27b)

http://dx.doi.org/10.1007/978-3-642-18092-7_1
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which constitute the formal basis of quantum hydrodynamics and have a direct corre-
spondence with those of classical fluid mechanics if m is identified with the mass of
a piece of fluid separated from the rest by a closed surface, mρ is the fluid density
and v is the velocity field of the flow [94]. However, unlike classical fluids, quantum
fluids correspond to probability flows, with no material structure [95]. That is, they
only characterize statistical events at each point in space and time, in spite of the fact
that the time evolution of these events can be better understood when compared with
the motion of ordinary fluids. Moreover, whereas the classical concept of fluid can
be applied to describe the statistical behavior of a macroscopic ensemble of particles,
in quantum mechanics it is applied to single particles.

According to the preceding statements, (6.27a) can be interpreted as the continuity
equation for the quantum flow, while (6.27b) represents the quantum Euler equation,
analogous to the classical one for an ideal classical fluid (incompressible and non-
viscous flow) when thermal effects are not taken into account. Indeed, considering
the classical Euler equation for the component vi of v (see (1.126) from Chap. 1),

ρ
[∂vi

∂t
+ (v · ∇)vi

]
= ρ fi + ∂

∂x j
(−pδi j ), (6.28)

where fi is the external force acting on the fluid along the i-direction and p the
fluid pressure. This expression shows how the flow dynamics is determined by the
influence of both an external force and other internal one, given by ρ−1∂(−pδi j )/∂x j

and that depends on the fluid properties. Now, ((6.27b) can be rewritten in the form
of (6.28) as

ρ
[∂vi

∂t
+ (v · ∇)vi

]
= ρ fi + ∂Ti j

∂x j
, (6.29)

by defining the quantum stress tensor as

Ti j = �
2

4m2 ρ
∂ln ρ

∂xi j
, (6.30)

which is the quantum counterpart of the classical stress tensor −pδi j , and whose
explicit dependence on ρ can be easily obtained by expressing Q as

Q = − �
2

2m

[
1

2
(∇ ln ρ)2 + ∇2 ln ρ

]
. (6.31)

An important topic in quantum hydrodynamics is the so-called quantum Navier–
Stokes equation. In classical fluid dynamics, this equation expresses the rate of change
in the momentum density, which is defined as the linear momentum times the fluid
density (see Chap. 1). In the quantum version, apart from the classical contributions,
quantum contributions are clearly identified and are related to quantum stress and
pressure (see, for example, [16]).

http://dx.doi.org/10.1007/978-3-642-18092-7_1
http://dx.doi.org/10.1007/978-3-642-18092-7_1
http://dx.doi.org/10.1007/978-3-642-18092-7_1
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As also happens with classical fluids, in quantum hydrodynamics one can
also observe the presence of vortices and the corresponding associated (vortical)
dynamics. The first theory on quantum vortices was first formulated by Dirac [96] in
connection with the existence of magnetic monopoles. This theory has been described
in detail in the literature [97, 98], finding some interesting applications [99]. More
recent and explicit developments of the quantum theory of magnetic monopoles
had led to a generalization of the concept of quantum vortex [100], the well-known
Aharonov–Bohm effect [101] being related to this generalization. On the other hand,
within the field of surface physics, the presence of this vortical motion has been
detected in atom-surface scattering process with presence of impurities, where atoms
may undergo a series of loops before they scape from the surface [102, 103].

The conditions leading to the formation of quantum vortices can be obtained from
the fact that the complex character of the wave function implies the multi-valuedness
of its phase

S′(r, t0) = S(r, t0)+ 2πn�, n = 0,±1,±2, . . . (6.32)

This multivaluedness can only take place at those points where ρ = 0 (nodal regions
of Ψ ), where the smoothness of the wave function disappears and the value of S may
undergo discrete jumps. According to (6.32), under these conditions J vanishes, but
not the velocity field v. By inspecting the circulation of v along a closed path, C, one
finds that this magnitude is quantized,

∮
C

dl·v =
∮
C

dl· ∇S

m
= 1

m

∮
C

d S = 2πn�

m
. (6.33)

Applying Stoke’s theorem to this result, it can be alternatively expressed as

∫
Σ

dr · (∇ × v) = 2πn�

m
, (6.34)

whereΣ is the region enclosed by C. This result indicates the appearance of vortices
when n �= 0, which happens only at those points where the wave function presents
nodes. At these points, the streamlines will be closed paths around the nodes, which
is consistent with the fact that the quantum current density vanishes at those points
and the impossibility of passing through the regions where ρ = 0. Conversely, the
velocity field v will be irrotational in those regions free of quantum vortices.

6.2.4 Bohmian Mechanics in Complex Space

In the previous Section, it was shown how Bohmian mechanics arises when a trans-
formation from the complex field variables (Ψ,Ψ ∗) to the real variable fields (ρ, S)
is considered. This transformation is necessary when looking for a theory based on
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real-valued fields; since Ψ is complex-valued, one real field will carry the informa-
tion about the modulus of Ψ and the other one about its phase. Alternatively, the
wave function can be expressed in terms of a complex phase,

Ψ (r, t) = ei S̄(r,t)/�, (6.35)

and therefore there will be a one-to-one correspondence between Ψ and S̄ —except
for a constant 2πn�, as in (6.32). Of course, in the particular case

S̄(r, t) = S(r, t)− i� ln R(r, t) = S(r, t)− i�

2
ln ρ(r, t), (6.36)

standard Bohmian mechanics is recovered. After substitution of (6.35) into the time-
dependent Schrödinger equation, we reach

∂S̄

∂t
+ (∇ S̄)2

2m
+ V̄eff = 0, (6.37)

which is a complex quantum Hamilton–Jacobi equation that can be regarded as the
time-dependent Schrödinger equation associated with a logarithmic wave function.
In this equation,

V̄eff ≡ V − i�

2m
∇2 S̄ (6.38)

is now an effective total complex potential, whose second component is a complex
quantum potential,

Q̄ = − i�

2m
∇2 S̄ = i�

2

[(∇Ψ
Ψ

)2

− ∇
2Ψ

Ψ

]
. (6.39)

Also as before, this (complex) quantum potential can be referred to as a sort of
(complex) quantum kinetic energy, since

K̂Ψ = (∇ S̄)2

2m
− i�

2m
∇2 S̄, (6.40)

which is the complex analog of (6.5). Actually, if (6.36) is substituted into the right-
hand side of (6.40),

K̂Ψ = 1

2m

{[
(∇S)2 − �

2

4

(∇ρ
ρ

)2

− i�

ρ
∇ρ∇S

]

−i�

[
∇2S − i�

2

∇2ρ

ρ
+ i�

2

(∇ρ
ρ

)2
]}

= (∇S)2

2m
+ Q − i�

2mρ
∇(ρ∇S). (6.41)
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From the second equality it is very apparent that the complex kinetic energy not only
contains the real quantum potential, but its imaginary part provides us with infor-
mation about the quantum flux conservation (i.e., about the rate of change ∂ρ/∂t).
In other words, it contains some extra information about the quantum flow, in such
a way that even in those cases where Q̄ may seem to be negligible (in comparison
with its real counterpart), this does not mean that the nonlocal information ruling
the quantum dynamics disappears and the motion will be classical. In general, as it
is inferred from (6.41), due to the complex nature of S̄, part of such an information
will be contained in the first term of the kinetic energy.

In analogy to standard Bohmian mechanics, complex quantum trajectories can
also be defined by analytic continuation of (6.37) to the complex plane, which is
necessary for the corresponding equation of motion,2

v̄ = ∇̄ S̄

m
= �

im

∇̄Ψ̄
Ψ̄
, (6.42)

to be self-consistent: if S̄ is complex, v has also to be complex-valued and, therefore,
the integrated trajectory. This also implies that S̄ (and eventuallyΨ ) will be evaluated
along a complex trajectory z(t) rather than along a real coordinate r (this is the
reason why Ψ̄ and ∇̄ are used in (6.42), instead of Ψ and∇), though its value will be
(physically) meaningful only along the real axis. The relationship between the real
Bohmian velocity and its complex counterpart,

v̄ = v − i�

2m

∇ρ
ρ
, (6.43)

can be followed from (6.36). Formerly, Rosen [104–106] considered this expression
a sort of total quantum mechanical momentum (or velocity) field which explains
why it is possible to observe nonvanishing momenta in cases where the momentum
∇S vanishes. This effect would arise from the second term on the right-hand side
of (6.43), which is assumed to be a “local” momentum assigned to the quantum
mechanical field with which the particle interacts. In this way, (6.43) becomes the
momentum that matches the momentum distributions provided by standard quantum
mechanics, rather than the momentum ∇S from Bohmian mechanics, which is quite
different [3, 107, 108]. This is consistent with the fact that Bohmian trajectories only
carry information about the dynamics of the quantum flow, while complex quantum
trajectories will also include information about the probability (as inferred from the
analytic continuation of S̄ from (6.36)). The dynamics in the complex configuration
space thus explains in a natural way how to get the correct momentum distribution.

2 Note that, unlike (6.6), the expression for v̄ is not symmetric with respect to Ψ̄ ∗. This is because,
as previously mentioned, in this case the transformation is one to one, and therefore the complex
conjugate wave field is not needed.
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This also explains why algorithms based on complex trajectories are quite stable and
accurate.

It is clear that if v̄ is assumed to be complex, depending on the z-variable, while
v and ρ depend on the real variable x, then (6.43) becomes an inequality. In the
literature [109–121], (6.43) has been considered as an identity, particularly within
the so-called stochastic Bohmian mechanics [120, 121], where the second term on
the right-hand side is interpreted as a stochastic diffusive term. However, not only this
is not mathematical consistent, but the inequality forbids to associate the real part of
the complex quantum trajectories with the (real, standard) Bohmian trajectories, as
assumed in the literature [109–117, 122, 123]. That is, assuming z(t) = zr (t)+i zi (t)
describes the complex trajectory, with zr and zi being its real and imaginary parts,
respectively, both being real functions, the equality zr (t) = x(t), where x(t) would
represent the standard Bohmian trajectory, does not hold as t goes on even if z0 = x0
at t = 0.Note that, from a strict Bohmian viewpoint, the equality zr (t) = x(t)means
that the same (projected) zr may present different (quantum) velocities, something
contrary to what happens in standard Bohmian mechanics, where only one velocity
can be associated with a space coordinate. Of course, only when moving to the
complex plane one realizes that, effectively, that univaluedness still continues, except
for those cases where a node of the wave function appears. This is precisely what
can be appreciated when looking at the behavior of the complex counterparts of the
Bohmian trajectories associated with an interference process [124], as displayed in
the top panel of Fig. 6.2. The four groups of complex trajectories below, from (a) to
(d), have been chosen such that the trajectories represented pass through the real axis
(i.e., their imaginary part becomes zero) at the times t = 0, 2, 4 and 8, respectively.
Therefore, if one of the Bohmian trajectories is considered, at such times it coincides
with the complex quantum trajectories that cross the real axis at each one of those
instants.

Once it is assumed that both terms in (6.43) depend on the complex z -variable, and
then v andρ are some generalized complex Bohmian functions (ṽ and ρ̃, respectively)
depending on this variable instead of r, it is instructive to apply ∇̄ on both sides,
which yields

∇̄v̄ = ∇̄ṽ + i�

2m

[( ∇̄ρ̃
ρ̃

)2

− ∇̄
2ρ̃

ρ̃

]
. (6.44)

As seen, the second term in the right-hand side reminds the functional dependence
of Q on ρ in (6.4), except for a 1/2 factor inside the square bracket. In this sense, the
effects of the (real) quantum potential (i.e., the nonlocality) are still present in the
complex dynamics although the corresponding complex quantum potential, which
is proportional to ∇̄v̄, might be relatively small (or even zero).

Equation (6.37) was formerly derived by Pauli during his studies on the quantum
WKB approximation [125, 126]. However, the formalism based on the complex
version of Bohmian mechanics is relatively recent, receiving much attention in these
last years. The work developed here can also be framed within the framework of
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Fig. 6.2 Top: Bohmian trajectories associated with an interference of two incoming wave packets.
Bottom: From (a) to (d), groups of complex quantum trajectories which cross the real axis at t = 0, 2,
4 and 8, respectively. To distinguish the contribution from each wave packet, both real and complex
trajectories associated with each one are represented with different color. As their real counterparts,
all complex trajectories start at t = 0 and end at t = 8. However, their initial conditions are chosen
such that at the particular time indicated before, all of them (within the same frame) cross the real
axis (i.e., their imaginary part vanishes)

the analytic versus synthetic approaches mentioned in the previous Section. From
the analytic viewpoint, with interpretational purposes, one of the trends followed is
the one aimed at studying stationary states. As can be easily shown, the velocity
field v vanishes when the wave function is described by energy eigenfunctions asso-
ciated with zero angular momentum states (i.e., s-waves) and, therefore, the corre-
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sponding Bohmian particles will remain standing at their initial positions at any time.
In order to overcome this problem, different time-independent quantum Hamilton–
Jacobi formulations have been formulated in the literature. For example, Floyd
[127–134] and Faraggi and Matone [135–140] developed time-independent quantum
Hamilton–Jacobi-like formulations starting from real bipolar ansatz, though not fully
equivalence to standard quantum mechanics at a predictive level. However, later on,
John [122, 123] proposed a time-dependent complex quantum trajectory formalism,
namely the “modified de Broglie–Bohm approach to quantum mechanics”, which
has also been used and further developed by other authors [109–117, 141] to under-
stand the problem of Bohmian stationarity in other kind of problems. On the other
hand, also with interpretational purposes, (6.37) was found [58, 59, 61, 62] when
trying to discriminate the amount of “quantumness” implicit in Bohmian trajectories
(i.e., how different they are with respect to their classical counterparts) within the
framework of the semiclassical WKB approximation. Finally, a series of fundamental
works can also be found in the literature dealing with the dynamics of problems in the
continuum, such as interference [124, 142, 143], entanglement [110] or stochastic
complex Bohmian mechanics [109, 117].

On the other hand, from the analytic viewpoint, Leacock and Padgett used [144,
145] the connection formula (6.35)—the same considered later by John—as an alter-
native way to tackle the problem of the calculation of stationary or bound states. This
is formally equivalent to the more recent “Bohmian mechanics with complex action”
developed by Tannor and coworkers [146–153] and the methodology developed by
Wyatt and coworkers [154–159] for computational purposes without the need to solve
the time-dependent Schrödinger equation. In principle, using analytical continuation
it is possible to implement numerical codes that benefit from working in a complex
configuration space—these advantages are similar to those that in electromagnetism,
for example, lead to consider complex fields instead of real ones. More specifically,
the main idea behind the development of computational tools based on the complex
trajectory methodology is that the wave function on the whole real axis can be synthe-
sized using the information transported by those particles crossing the real axis simul-
taneously. This allows us to define a curve, namely the isochrone [148, 157, 158],
which joins the specific initial positions of trajectories such that their crossing with
the real axis occurs at the same time. Computationally, the main problem in dealing
with the complex dynamics is locating isochrones, which is similar to the root search
problem in semiclassical mechanics [75]. In this regard, methods devised to solve
the latter might prove useful for the isochrone problem [158, 159]. Actually, within
this picture, three points are worth stressing. First, all the complex trajectories asso-
ciated with an isochrone will reach the real axis simultaneously [156]. Second, the
uniqueness in complex Bohmian mechanics arises from the bonds established by the
initial real wave function, which is in the end the observable magnitude (through ρ).
Therefore, though there might be many initial conditions leading to the same point on
the real axis, only the isochrones connect the complex problem with the real one, thus
establishing the same uniqueness observed in standard Bohmian mechanics. Third,
a Bohmian trajectory does not correspond, therefore, to a given complex trajectory
or to the family of complex trajectories associated with a given isochrone, but to a
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family of complex trajectories such that their crossings with the real axes take place
consecutively, one after the other. In other words, a Bohmian trajectory itself defines
a family or set of complex quantum trajectories [124].

6.2.5 Feynman’s Paths and Bohmian Trajectories

As seen in Sect. 3.4, the essential feature of Feynman’s formulation of quantum
mechanics consists of assigning a phase or probability amplitude to each classical
path from an ensemble, though their associated probabilities can be the same for all
of them. In this way, the probability for an event to happen arises as the combined
effect—interference—of all the classical paths considered. In order to better establish
a connection with Bohmian mechanics, consider two causal events, a and b; the first
takes place on ra at ta and the later on rb at tb. According to Sect. 1.2.1, the path
joining both events is described by a trajectory r̄(t) determined through the least
action principle. That is, the corresponding classical action is an extremum when
evaluated along it. In this way, classical mechanics provides us with a criterion to
distinguish between physical and nonphysical trajectories. In quantum mechanics,
though, according to Feynman such a distinction cannot be considered a priori, for
any thought trajectory joining those two events is equally valid. Therefore, unlike
classical mechanics, in Feynman’s approach both the functional form of the action
Scl as well as its value when evaluated along any path are relevant.

The combined effect of all possible paths was defined by means of a propa-
gator, which acts according to Huygens’ principle. That is, following an optical
analogy, the (quantum) wave function at the time tb is not other thing that the inter-
ference of a series of secondary wavelets starting from a wave function at a previous
time ta , i.e.,

Ψ (rb, tb) =
∫

K [rb, tb; ra, ta]Ψ (ra, ta)dra, (6.45)

with

K [rb, tb; ra, ta] =
∫ b

a
ei Scl [b,a]/�Dx(t), (6.46)

as seen in Sect. 3.4 . The dependence of this sum with each one of the paths considered
is contained in the action Scl [b, a]when evaluated along them, thus taking all of them
into account—though the “classical” ones are only those which make Scl [b, a] to be
an extremum. On the other hand, Huygens’ secondary wavelets are described by the
term ei Scl [b,a]/�, which can be interpreted as dressing each trajectory with a wave.

In order to find a relationship between Feyman’s formulation and Bohmian
mechanics, it is important to note that while Feynman’s paths constitute an ensemble
of virtual paths joining two given points, only one Bohmian trajectory will join such
points [13]—classically, there would be a set of them in configuration space and only

http://dx.doi.org/10.1007/978-3-642-18092-7_3
http://dx.doi.org/10.1007/978-3-642-18092-7_1
http://dx.doi.org/10.1007/978-3-642-18092-7_3
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one in phase space. This trajectory is precisely the one that satisfies the guiding condi-
tion ṙ = ∇S/m. In particular, S can be associated with the phase of the kernel (6.46)
when it is expressed in the form K = Rei S/�. In analogy to the way how a trajectory
is defined in classical mechanics (see Sect. 1.2.1 ), here a quantum trajectory can be
defined as

S(r, t; r0, t0) =
∫ (r,t)

(r0,t0)

(
1

2
mṙ2 − V − Q

)
dt, (6.47)

which should be an extremal along such a trajectory. Keeping this in mind, Feynman’s
formulation could be interpreted as a way that allows us to obtain the quantum action
by means of a superposition of all possible classical-like actions. Similarly, a quantum
trajectory can be considered as a sort of superposition of classical trajectories, each
one of them contributing to the interference with a different phase. This allows us
to assume the quantum momentum of a particle at a certain point (r, t) as given
by a function of the “virtual” momenta associated with each one of the Feynman
paths which pass through such a point. In order to see this more apparently, if (6.46)
is written as a discrete sum K = N

∑
j ei S j /�, where j labels the corresponding

classical trajectory, the quantum momentum at the point (r, t) will be

∇S = N 2 R−2

⎡
⎣∑

j

∇S j +
∑
j �=k

∇S j cos[(S j − Sk)/�]
⎤
⎦ . (6.48)

As can be seen, this expression gives the quantum momentum as an average over clas-
sical momenta,∇S j , as well as an additional term which accounts for the interference
between the different secondary wavelets dressing the classical trajectories—note
that, in general, the momentum ∇S j corresponding to evaluate the classical action
along a quantum trajectory is not the same as ∇S.

6.3 Towards the Classical Limit in Bohmian Mechanics

According to the correspondence principle stated by Bohr [160] in 1923, quantum
systems may behave classical-like under certain conditions, thus being describable
by means of the classical mechanical laws. This is usually regarded as the classical
limit of quantum mechanics. Usually, this limit relies on assuming that the value of
a certain magnitude of interest becomes meaningless (e.g., �) or, on the contrary,
very large (e.g., the principal quantum number)—though not always different clas-
sicality criteria lead to the same limit [161, 162]. In the case of Bohmian mechanics,
for example, it is typical to regard the classical limit (at least, from a formal view-
point) as the regime where Q becomes negligible and, therefore, (6.2b) becomes the
classical Hamilton–Jacobi equation. This condition can be satisfied, for example, by
increasing the mass m of the particles described. However, though this may seem

http://dx.doi.org/10.1007/978-3-642-18092-7_1
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the correct way to operate, what one really observes is that this condition does not
ensure the appearance of classical trajectories, as can be seen in atom-surface scat-
tering [57], for example. In this case, though the corresponding diffraction pattern
(i.e., the observable quantity in this type of quantum process) behaves on average like
the corresponding classical pattern, the “fine grain” shows very strong oscillations.
Similarly, the quantum trajectories do not behave at all as their classical counter-
parts, for they still contain some nonlocal information (i.e., coherence) through ρ.
Remember that regarding dynamical effects the “shape” of ρ is more relevant than its
intensity. Thus, very tinny values of ρ may lead to very dramatic dynamical effects.
This is in sharp contrast with other limits in physics, like the passage from relativistic
to Newtonian mechanics, where a gradual, smooth transition is observed as particle
velocities become much smaller than the speed of light.

6.3.1 The JWKB Approximation

As seen in Sect. 3.5.1, Ehrenfest’s theorem helps us to establish certain criteria of
classicality, e.g., obtaining the conditions for the center of a wave packet to move
like a classical particle [163]. Now, as also seen in Sect. 6.2.2, such a wave packet
can be interpreted as a swarm of non-interacting particles moving according to the
motion laws of Bohmian mechanics, which in Newtonian terms read as

dr
dt
= p

m
, (6.49a)

dp
dt
= −∇Veff , (6.49b)

and distribute as ρ(r, t). Therefore, the corresponding average values will evolve as

d r̄
dt
= 〈p〉

m
, (6.50a)

dp̄
dt
= −∇V eff , (6.50b)

under conditions of (Ehrenfest) classicality. This does not mean necessarily that
Bohmian particles move like classical ones, but only on average (i.e., their distrib-
ution). A good example illustrating this fact is the one mentioned above on atom-
surface scattering, where the mass of the incident particles is gradually increased
[57]: the average distributions reproduce classical-like results, but quantum trajec-
tories behave very differently with respect to their classical counterparts.

Ehrenfest’s theorem may constitute a first step when trying to render some light
on the transition to the classical limit. However, the JWKB approximation (see also
Sect. 7.3) results more insightful when dealing with Bohmian mechanics. Due to
the explicit series developments in terms of �—though not always this is a good

http://dx.doi.org/10.1007/978-3-642-18092-7_3
http://dx.doi.org/10.1007/978-3-642-18092-7_7
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criterion—, it yields a more direct correspondence between Bohmian and classical
mechanics, i.e., to establish a closer connection between two trajectory-based formu-
lations. Thus, as in optics [164], here one also proceeds with the ansatz

Ψ (r, t) = eiS̄(r,t)/�, (6.51)

with S̄ being a complex function that varies slowly in space. When (6.51) is substi-
tuted into the time-dependent Schrödinger equation,

∂ S̄

∂t
+
(∇ S̄

)2
2m

+ V + �

2mi
∇2 S̄ = 0, (6.52)

which corresponds to (6.37 ). In this regard, notice that in spite of the assumptions
on S̄, it is a general equation. Nevertheless, in the classical limit � → 0, it can be
assumed that S̄ can be expanded as a series of �/ i ,

S̄ =
∞∑

n=0

(
�

i

)n

S̄(n), (6.53)

where the functions S̄(n) are real. Inserting this series into (6.52), one obtains

∞∑
n=0

(
�

i

)n
∂S̄(n)

∂t
+ 1

2m

∞∑
n=0

(
�

i

)n n∑
k=0

∇ S̄(k) · ∇ S̄(n−k)

+ V + 1

2m

∞∑
n=0

(
�

i

)n+1

∇2 S̄(n) = 0.

(6.54)

The JWKB approximation consists of solving order by order, in powers of �/ i , the
coupled equations involved in (6.54 ). Thus, at zeroth order,

∂ S̄(0)

∂t
+
(∇ S̄(0)

)2
2m

+ V = 0, (6.55)

which is the classical Hamilton–Jacobi equation, with S̄(0)(r, t) being the classical
action, Scl. Note that although S̄ is not a real function in general, S̄(0) is real because
(6.55) is real.

Regarding the remaining terms of (6.54), i.e.,

∞∑
n=1

(
�

i

)n
∂ S̄(n)

∂t
+ 1

2m

∞∑
n=1

(
�

i

)n n∑
k=0

∇ S̄(k) · ∇ S̄(n−k)

+ 1

2m

∞∑
n=1

(
�

i

)n

∇2 S̄(n−1) = 0, (6.56)

they lead us to a hierarchy of equations which couple the different higher orders of
S̄. These equations can be expressed in a general form as
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∂ S̄(n)

∂t
+ 1

2m

n∑
k=0

∇ S̄(k) · ∇ S̄(n−k) + 1

2m
∇2 S̄(n−1) = 0, (6.57)

which couple the nth order with the remaining lower ones. Here, it is interesting to
note that, since (6.57) is real as well as S̄(0), all the remaining n orders will also be
real.

Usually, the semiclassical wave function is defined as

Ψ (r, t) = eS̄(1)(r,t)+i S̄(0)(r,t)/�, (6.58)

i.e., taking into account only the zeroth and first orders of S̄—in particular, the first
exponential is related to the van Vleck determinant seen in Sect. 3.5.2—, where the
latter reads as

∂ S̄(1)

∂t
+ 1

m
∇ S̄(0) · ∇ S̄(1) + 1

2m
∇2 S̄(0) = 0 (6.59)

and comes from (6.57) when n = 1. The reason why semiclassically only the first
two terms of S̄ in (6.58) are considered comes from the fact that they are related to
the probability density and the quantum probability current density,

ρ(r, t)  e2S̄(1)(r,t), (6.60a)

J(r, t) = �

m
Im[Ψ ∗∇Ψ ]  1

m
e2S̄(1)∇ S̄(0), (6.60b)

respectively, which (at this order of approximation) will be independent (at least
explicitly) of �. Furthermore, it can be noticed that (6.60b) can be expressed as

J(r, t)  ρ(r, t)vcl(r, t), (6.61)

where v0 = ∇ S̄0/m describes the classical velocity (actually, a generalized velocity,
vcl ≡ p/m) within the Hamilton–Jacobi formulation of classical mechanics. That is,
taking into account this picture, the classical limit is understood as a motion regime
characterized by a continuous mass density, mρ(r, t), under the action of a (classical)
velocity field vcl(r, t).

If the wave function (6.51) is expressed in polar form, taking (6.53) into account,

R = exp

[ ∞∑
n=0

(−1)n�
2n S̄(2n+1)

]
, (6.62a)

S =
∞∑

n=0

(−1)n�
2n S̄(2n). (6.62b)

http://dx.doi.org/10.1007/978-3-642-18092-7_3
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Substituting (6.62b) into (6.6), one obtains the expression of the quantum trajectories
within the JWKB approach, i.e., in terms of �,

ṙ = 1

m

∞∑
n=0

(−1)n�
2n∇ S̄(2n) = ṙcl + 1

m

∞∑
n=1

(−1)n�
2n∇ S̄(2n), (6.63)

where ṙcl = ∇ S̄(0)t /m is the classical law of motion. Therefore, from (6.63) one
can interpret quantum trajectories as classical trajectories “dressed” with a series
of terms coming from quantum interference, showing the capital difference between
both types of trajectories. Moreover, also from (6.63) it is very apparent how classical
mechanics underlies quantum mechanics and, therefore, how quantum phenomena
will keep a reminiscence of a classical-like feature—which will be stronger as the
classical limit is approached. This can also be seen by reexpressing (6.63) in a
Newtonian-like way,

r̈ = ∂

∂t

(∇S

m

)
= −∇

m

∞∑
n=0

(−1)n �
2n ∂ S̄(2n)

∂t

= −∇
m

∞∑
n=0

(−1)n
�

2n

2m

[
2n∑

k=0

∇ S̄(k) · ∇ S̄(2n−k) +∇2 S̄(2n−1)

]
. (6.64)

As can be noticed, from this expression the classical potential can be straightfor-
wardly obtained as a function of S̄(0),

V = −∂ S̄(0)

∂t
− (∇ S̄(0))2

2m
, (6.65)

i.e., in terms of the corresponding classical Hamilton–Jacobi equation. On the other
hand, the quantum potential will consist of the remaining terms,

Q = − �
2

2m

[ ∞∑
n=0

(−1)n�
2n∇2 S̄(2n+1) +

∞∑
n=0

(−1)n�
2n

n∑
k=0

S̄(2k+1) S̄(2(n−k)+1)

]
,

(6.66)
which, as is apparent, is a much more complicated function of the S̄(n).

6.3.2 Interaction and Entanglement

Consider two isolated quantum objects regardless of their size or properties and
that the total wave function describing them is a product state (factorizable) of the
wave functions associated with each object. As already mentioned by Schrödinger
[165, 166], as soon as these objects enter into contact one with another, i.e., as they
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interact, the total wave function becomes no longer factorizable and they cannot be
described as independent entities. The new quantum state becomes entangled, with
the property that any quantum operation performed on one of the objects will have
important implications on the other one independently of how far apart they are
[10–12, 167]. This property has led to the well-known quantum information theory
[168] as well as mechanisms, such as decoherence, which are used to explain the
appearance of the classical world from quantum mechanics [169–171].

Before going to the implications of entanglement and, in particular, its implica-
tions in the classical limit, let us consider a set of N bodies, each one represented at
a given time by a solution of the corresponding separated Schrödinger equation. The
total N-body wave function can be expressed, as said above, as a product of N single
wave functions,

Ψ (r1, r2, . . . , rN , t) = ψ1(r1, t)ψ2(r2, t) · · ·ψN (rN , t)

= ΠN
i=1ρ

1/2
i (ri , t) ei Si (ri ,t)/�. (6.67)

In this case, it is easy to show that from this total wave function, individual solutions
of the Bohmian equations of motion are obtained according to

vi = ṙi = ∇ri Si (ri , t)

m
, (6.68)

since the quantum potential is also separable as a sum of partial quantum potentials,

Q =
N∑

i=1

Qi =
N∑

i=1

− �
2

2m

∇2ρ
1/2
i

ρ
1/2
i

. (6.69)

This implies that the Bohmian trajectories described by the different particles
are independent and no information is transmitted among them. Of course, this
also happens if instead of N different bodies, N different degrees of freedom are
considered, for the treatment is exactly the same. In order to illustrate this, consider
a wave function which depends on two coordinates, x and y—which may represent
two different bodies or two different degrees of freedom—, is factorizable in terms
of single–particle partial wave functions,

Ψ (x, y, t) = ψ1(x, t)ψ2(y, t) = ρ1/2
1 (x, t)ρ1/2

2 (y, t) ei
[

S1(x,t)+S2(y,t)
]
/�
. (6.70)

Thus, each coordinate follows an independent equation of motion,

v1 = 1

m

∂S1(x, t)

∂x
, v2 = 1

m

∂S2(y, t)

∂y
, (6.71)

which are uncoupled because S(x, y, t) = S1(x, t)+ S2(y, t). This is also apparent
from the corresponding total quantum potential,
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Q(x, y, t) = − �
2

2m

1

ρ
1/2
1 (x, t)

∂2ρ
1/2
1 (x, t)

∂x2 − �
2

2m

1

ρ
1/2
2 (y, t)

∂2ρ
1/2
2 (y, t)

∂y2

= Q1(x, t)+ Q2(y, t), (6.72)

which is fully separable because ρ(x, y, t) = ρ1(x, t)ρ2(y, t).
Typically, factorizability is closely connected to distinguishability, i.e., with the

idea that both objects are distinguishable and can be monitored independently.
For example, this is the case of particles describable by means of a Maxwell–
Boltzmann statistics. That is, for two of these particles their total wave function can be
expressed as

Ψ (r1, r2, t) = ΦA(r1, t)ΦB(r2, t). (6.73)

Usually, the particles constituting this kind of ensembles are non-interacting and
they can be accounted for by only taking into account how they distribute. When
the particles forming an ensemble do interact among themselves and become indis-
tinguishable (i.e., truly quantum-mechanical), apart from their distribution it is also
very important how they interact. In this case, even if they are very far apart, their
quantum state cannot be described in a simple manner, but it is an entangled state. This
is the case of the Fermi–Dirac or Bose–Einstein statistics, which describe fermions
or bosons, respectively. That is, if two of these particles are considered, their total
wave function will be

Ψ (r1, r2, t) = N±
[
ΦA(r1, t)ΦB(r2, t)±ΦA(r2, t)ΦB(r1, t)

]
, (6.74)

where the minus sign stands for fermions (wave function with odd parity under
exchange of the positions of the particles) and the plus sign for bosons (even parity).

As a simple illustration of these ideas, consider the case of two particles which
interact through a potential V at some time. The two-particle wave function describing
this system will be

Ψ (x, y, t) = ρ(x, y, t) ei S(x,y,t)/�. (6.75)

The trajectories for these particles are obtained from

v1 = 1

m

∂S(x, y, t)

∂x
, v2 = 1

m

∂S(x, y, t)

∂y
, (6.76)

which are influenced by the quantum potential

Q(x, y, t) = − �
2

2m

1

R(x, y, t)

[
∂2 R(x, y, t)

∂x2 + ∂
2 R(x, y, t)

∂y2

]
. (6.77)

According to Schrödinger [165, 166], after the interaction, even if the two particles are
very far apart one from another, the wave function (6.75) becomes non-factorizable,
i.e.,
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Ψ (x, y, t) �= ψ(x, t)ψ(y, t), (6.78)

and the evolution of both particles will remain entangled.
In general, given an entangled state described by the wave function

Ψ (r1, r2, . . . , rN , t) = R(r1, r2, . . . , rN , t) ei S(r1,r2,...,rN ,t)/�, (6.79)

the corresponding quantum trajectories will be obtained by integrating the equation
of motion

vi = ∇i S

m
, (6.80)

where the right-hand side will be dependent in general on the degrees of freedom
involved in the problem, though∇ is computed with respect to ri . This scheme gives
rise to a set of N equations of motion coupled through the total phase S, where the
evolution of a particle will be strongly nonlocally influenced by the other (apart from
other classical like interactions through V). This entanglement [165, 166] becomes
more apparent through the quantum potential,

Q = − �
2

2m

N∑
i=1

∇2
i R

R
, (6.81)

where Q = Q(r1, r2, . . . , rN , t), which is nonseparable and, therefore, strongly
nonlocal. Different works in the literature analyze the trajectory correlation among
entangled particles [172–179], the most recent one within the many-body context of
transport phenomena in mesoscopic systems [179].

6.3.3 Mixed Bohmian-Classical Mechanics

The reason why quantum systems behave very differently from classical ones is
because of the property of coherence, i.e., their ability to interfere (as it also happens
in optics). Nonetheless, this phenomenon cannot be gradually suppressed under any
limit. In order to eliminate totally interferences and, therefore, achieve an appro-
priate classical limit, it is necessary to introduce an additional mechanism, though
still within the framework of quantum mechanics. This mechanism is decoherence
[1, 169–171], which is the gradual loss of coherence by an interaction with an environ-
ment. This interaction makes the wave function to become entangled. Consequently,
if one only “looks” at the system of interest by tracing out over the remaining degrees
of freedom, a loss of coherence is observed (i.e., its capability to interfere).

As mentioned in Chap. 3, there are different hybrid approaches to deal with many
degree-of-freedom systems, where the system degrees of freedom are described
quantum-mechanically while the bath ones are accounted for classically. Among

http://dx.doi.org/10.1007/978-3-642-18092-7_3
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them, there are methods such as the mean-field approximation [180] or the surface
hopping trajectories [181, 182]. In all these methods, the key point is the implemen-
tation of the so-called backreaction [183], i.e., the action of the system over the bath,
since the contrary is simple and it is usually done in terms of a time-dependent poten-
tial which is function of the bath coordinates (following the BOA scheme). Here,
this problem will be analyzed within the framework of the mixed quantum-Bohmian
approach [42–46].

Thus, consider a two dimensional total system, where x and y denote the coor-
dinates of the two subsystems, with masses mx and my , respectively. As before, an
ansatz wave function with polar form is considered, but taking into account that now
it represents a solution of a two-dimensional Schrödinger equation. In this case, the
corresponding continuity and quantum Hamilton–Jacobi equations will read as

∂R2

∂t
+ 1

mx

∂S

∂x

∂R2

∂x
+ 1

my

∂S

∂y

∂R2

∂y
= −R2

(
1

mx

∂2S

∂x2 +
1

my

∂2S

∂y2

)
, (6.82a)

∂S

∂t
+ 1

2mx

(
∂S

∂x

)2

+ 1

2my

(
∂S

∂y

)2

= −Veff , (6.82b)

respectively, where the quantum potential has the form

Q(x, y, t) = − �
2

2mx

1

R

∂2 R

∂x2 −
�

2

2my

1

R

∂2 R

∂y2 . (6.83)

Focussing now on the quantum-classical (x−y) coupling, (6.82b) is recast in its
Eulerian form. In order to do so, the operators ∂/∂x and ∂/∂y are applied to (6.82b).
This gives rise to the coupled equations

∂

∂t

(
∂S

∂x

)
+ 1

mx

∂S

∂x

∂2S

∂x2 +
1

my

∂S

∂y

∂2S

∂y∂x
= −∂Veff

∂x
, (6.84a)

∂

∂t

(
∂S

∂y

)
+ 1

my

∂S

∂y

∂2S

∂y2 +
1

mx

∂S

∂x

∂2S

∂x∂y
= −∂Veff

∂y
, (6.84b)

respectively, which are expressed in terms of the Bohmian velocities px = ∂S/∂x
and py = ∂S/∂y. Note that, taking into account the definition of the Lagrange
time derivative for this case, (6.84a) and (6.84b) just represent the quantum force
undergone by each subsystem,

mx
d2x

dt2 = −
∂Veff

∂x
, my

d2 y

dt2 = −
∂Veff

∂y
. (6.85)

Now, assume my � mx .Under this hypothesis, it is expected that the subsystem y
will behave almost classically. For example, if the full system is represented initially
by a Gaussian wave packet, it will not display an important spreading along the y
direction and, therefore, the second space-derivatives of S and R along this direction
will be negligible. This allows us to reexpress (6.84a) and (6.84b) as
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∂

∂t

(
∂S̃

∂x

)
+ 1

mx

∂ S̃

∂x

∂2 S̃

∂x2 +
1

my

∂S̃

∂y

∂2 S̃

∂y∂x
= −∂Ṽeff

∂x
, (6.86a)

∂

∂t

(
∂S̃

∂y

)
+ 1

mx

∂ S̃

∂x

∂2 S̃

∂x∂y
= −∂Ṽeff

∂y
, (6.86b)

where S̃ and R̃ represent the approximate values of S and R, respectively, under
this assumption. In these equations, Ṽeff is the corresponding approximate effective
potential, with

Q̃(x, t |y) = − �
2

2mx

1

R̃

∂2 R̃

∂x2 , (6.87)

where (x, t |y) means that Q̃ depends on y implicitly, through a sort of parame-
trization. On the other hand, (6.82a) becomes the approximate continuity equation,

∂ R̃2

∂t
+ ∂

∂x

(
R̃2

mx

∂ S̃

∂x

)
+ 1

my

∂S̃

∂y

∂ R̃2

∂y
= 0. (6.88)

Evaluating (6.86a) and (6.88) along the quasi-classical trajectory y(t) allows us
to define the pseudo-Lagrangian time derivative operator

d

dt
= ∂

∂t
+ vy

∂

∂y
. (6.89)

and, therefore, to reexpress those equations as

d

dt

(
∂S̃

∂x

)
+
(

1

mx

∂S̃

∂x

)(
∂2 S̃

∂x2

)
= −∂Ṽeff

∂x
, (6.90a)

d R̃2

dt
+ ∂

∂x

(
R̃2 1

mx

∂S̃

∂x

)
= 0, (6.90b)

which satisfy the pseudo-Schrödinger equation

i�
dΨ̃ (x, y(t), t)

dt
=
[
− �

2

2mx

∂2

∂x2 + V (x, y(t))

]
Ψ̃ (x, y(t), t), (6.91)

where Ψ̃ = R̃ei S̃/�. As can be noticed, the dimensionality of the full quantum
problem has now reduced to the subspace dimensionality associated with the
subsystem x, for the classical-like subsystem y acts as a time-dependent para-
meter (the external potential V has become time-dependent in virtue of this parame-
trization). On the other hand, subsystem y evolves according to the quasi-classical
Newtonian equation
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my
d2 y

dt2 =
∂

∂y

[
V (x, y, t)+ Q̃(x, t |y)] , (6.92)

which arises from (6.86b) after the applying the pseudo-Lagrangian operator (note
that it can also be obtained from (6.85) after the corresponding approximation is
considered) and is integrated after getting the solution Ψ̃ (x, y(t), t) from (6.91).

6.3.4 Reduced Quantum Trajectories

An interesting description of Bohmian mechanics arises from the field of decoherence
and the theory of open quantum systems. Here, in order to extract useful information
about the system of interest, one usually computes its associated reduced density
matrix by tracing out the total density matrix, ρ̂t , over the environment degrees of
freedom. In the configuration representation and for an environment constituted by
N particles, the system reduced density matrix is obtained after integrating ρ̂t ≡
|Ψ 〉t t 〈Ψ | over the 3N environment degrees of freedom, {ri }Ni=1,

ρ̃(r, r′, t) =
∫
〈r, r1, r2, . . . rn|Ψ (t)〉〈Ψ (t)|r′, r1, r2, . . . rn〉dr1dr2 · · · drn .

(6.93)
The system (reduced) quantum current density can be derived from this expression,
being

J̃(r, t) ≡ �

m
Im[∇rρ̃(r, r′, t)]

⏐⏐⏐
r′=r

, (6.94)

which satisfies the continuity equation

˙̃ρ + ∇J̃ = 0. (6.95)

In (6.95), ρ̃ is the diagonal element (i.e., ρ̃ ≡ ρ̃(r, r, t)) of the reduced density matrix
and gives the measured intensity [184].

Taking into account (6.94) and (6.95), it is possible to define the velocity field, ṙ,
associated with the (reduced) system dynamics as

J̃ = ρ̃ṙ, (6.96)

which is analogous to the Bohmian velocity field. Now, from (6.96), a new class of
quantum trajectories is defined, which are the solutions to the equation of motion

ṙ ≡ �

m

Im[∇rρ̃(r, r′, t)]
Re[ρ̃(r, r′, t)]

⏐⏐⏐⏐
r′=r

. (6.97)
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These new trajectories are the so-called reduced quantum trajectories [177, 178],
which are only related to the system reduced density matrix. As shown in [177], the
dynamics described by (6.95) leads to the correct intensity (whose time-evolution is
described by (6.97)) when the statistics of a large number of particles is considered.
Moreover, it is also straightforward to show that (6.97) reduces to the well-known
expression for the velocity field in Bohmian mechanics when there is no interaction
with the environment.

6.4 Extended Madelung Formulation for Dissipative
Systems

A simple and straightforward generalization of Madelung’s hydrodynamical formu-
lation of wave mechanics to dissipative systems can be reached [185] by considering
the following replacements

∂S

∂t
→ ∂S

∂t
+ f (x, t), (6.98a)

∂S

∂x
→ ∂S

∂x
+ g(x, t), (6.98b)

in the continuity and Hamilton–Jacobi equations, with f and g being two functions
to be determined. In general, the force friction resulting from these replacements is

F f = ∂g

∂t
− ∂ f

∂x
, (6.99)

and, from Ehrenfest’s theorem, the expectation values will satisfy

m
d〈v〉
dt
= −

〈
∂V

∂x

〉
+ 〈F f 〉. (6.100)

Now, in particular, for the choice g = 0 and f = γ(S − 〈S〉) the resulting friction
force acting on the particle is

F f (x, t) = − γ
∂S

∂x
= − γ mv, (6.101)

thus recovering Kostin’s nonlinear wave equation [186, 187].
This hydrodynamic description of quantum mechanics has been developed consid-

ering dissipation for distributions in configuration space and phase space, and their
moments [47, 188, 189]. Master equations are then obtained for the reduced system
(after tracing over the environmental coordinates) by an extension of the Liouville–
von Neuman equation including the dissipation operator or dissipator D [190],
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∂ρ

∂t
= −i�

[
H, ρ

]+Dρ. (6.102)

Caldeira and Leggett introduced a master equation like (6.102), although it is not
of Linblad type since positivity of the reduced density is not guaranteed [191]. An
infinite hierarchy of kinetic equations in terms of moments of the distribution arises
which can be truncated by suitable approximations. The dissipation operator does
not act upon the diagonal elements of ρ. Decoherence effects are finally obtained
following this scheme which has been developed as an alternative to wave packet
propagation.

6.5 Quantum Stochastic Trajectories. The Beable
Interpretation

After Bell’s theorem [8, 9] and subsequent experiments [10–12, 167], certain interpre-
tations of quantum mechanics different from the standard Copenhagen interpretation
have received much attention. The basic idea behind one of these approaches consists
of dealing with classical concepts—mainly positions and momenta—or beables, as
termed by Bell [192], but following originally the arguments of de Broglie and Bohm.
This approach is radically opposite to one of the fundamental pillars of the stan-
dard version of quantum mechanics, the non-commensurability of non-commuting
observables. Two of the better known beable interpretations are [121, 193]: the causal
and the stochastic interpretations. In this kind of analysis, one of the most important
questions arises, the concept of nonlocality. Classical mechanics is a local theory and
if classical concepts are used in quantum mechanics, one has to understand how it
works in order to avoid misinterpretations. The first attempts in the stochastic version
appeared in the 1950s and were suggested by Schrödinger leading Fürth to study the
formal analogy between the Brownian motion and the Schrödinger equation consid-
ered like a diffusion equation. More recently, the works by Kershaw [194], Comisar
[119], Nelson [195] and Olavo [196] tried to explain the origin of stochasticity in
the quantum world, although Grabert et al. [197] showed that quantum mechanics
is not equivalent to a Markovian diffusion process. Nelson’s approach has predomi-
nantly been most cited in the literature. By introducing a new osmotic velocity and
different accelerations, Nelson obtained the continuity and Hamilton–Jacobi equa-
tions of Bohmian mechanics. Right after the causal theory came out, Bohm and Vigier
[198] also introduced a stochastic formalism, where the quantum system is immersed
in a fluid displaying some random behavior leading to an additional component in
the mean velocity; even the fluid could be avoided and only to consider such an extra
random contribution. Like Einstein, they introduced the so-called osmotic velocity in
the diffusion process in order to balance the diffusion current to obtain the velocity of
the Bohm theory. The osmotic velocity is pushing the particle to regions of maximum
probability and is derivable from the potential D ln ρ, D being the diffusion coeffi-
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cient. In this treatment the authors remarked the difference between the probability
density of particles and the quantum distribution seen as the square modulus of the
wave function. The first one is ruled by the Fokker–Planck equation and the second
one by the conservative continuity equation. At equilibrium, both coincide.

It is quite natural to write an Itô stochastic differential equation in one dimension
in the Bohmian framework for the position as [193]

dx(t) =
(

D

R

∂R

∂x
+ 1

m

∂S

∂x

)
dt +√D dW (t), (6.103)

where W (t) is a Wiener process, D is an arbitrary but sufficiently small diffusion
constant proportional to �, when the wave function is written in polar form; the
osmotic velocity is given by D(∂R/∂x)/R. For D = 0, (6.103) reduces to the causal
expression for the velocity. The probability density of particles always obeys the
standard continuity equation.

Obviously, this is not the only way to obtain quantum stochastic trajectories. There
are at least several routes for such a goal. The first one could consist of carrying out
a time evolution of the wave function in terms of the Caldirola–Kanai Hamiltonian
discussed in Chaps. 2 and 5 for a pure dissipative dynamics, extracting quantum
dissipative trajectories from the phase of the wave function when expressed in polar
form according to (6.1). In the second route, the quantum stochastic trajectories could
be obtained from solving the Itô or Stratonovich differential equation, as shown in
Chap. 5, for stochastic wave functions expressed in polar form. The terminology
quantum trajectories is somewhat confusing here since in the context of stochastic
wave functions (see Chap. 5) is also used. Several types of stochastic differential
equations can be considered [199], even in the non-Markovian case [200]. Finally, the
third route could be based on a generalization of the Langevin equation by substituting
the interaction potential by the effective interaction potential which would include the
quantum potential. Analogously, the same procedure could be followed by using the
van der Pol and Duffing equations mentioned in Chap. 2, (2.4) and (2.5), respectively.

Vink [193] also proposed to give a beable status to all observables or physical
quantities. These physical quantities which can be discrete or continuous are consid-
ered as discrete by assuming that the separation between two consecutive values
is very small, of the order of Planck scale. For a set of commuting observables
with discrete eigenvalues, the continuity equation in such a representation can be
expressed as a master equation,

∂Pn

∂t
=
∑

m

(Tnm Pm − Tmn Pn), (6.104)

where the transition matrix T gives rise to a time-dependent probability distribution
of the set of observables Pn(t). The right-hand side of (6.104) is proportional to
a source matrix, Jnm , which has to fulfill a series of general conditions [193]. In
particular, its elements have to follow a Gaussian ansatz for the homogeneous master
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equation (i.e., the right-hand side of (6.104) has to be equal to zero). This theoretical
scheme has been applied to several simple cases, such as a free particle on a circle,
a spinning particle in a magnetic field, the harmonic oscillator or coherent states
[199, 201].

In any case, a more detailed discussion on these very important issues is provided
in Volume 2.

6.6 Are Bohmian Trajectories Real Particle Trajectories?

Bohmian mechanics constitutes a new paradigm to interpret and evaluate quantum
processes and phenomena in terms of individual trajectories pursued by individual
quantum systems. Now, the question that immediately arises is: what is a Bohmian
particle? In other words, is it the “real” path followed by a quantum particle or
displayed by a quantum degree of freedom? There is in the literature a controversy
on this issue [202–207] and, actually, it is not far from the answer to this question. In
order to provide here a certain answer—probably not final, but at least satisfactory—,
let us first discuss two cases from classical mechanics. First, consider one wants to
perform a measurement on a simple object. One measurement is irrelevant and, there-
fore, we need to consider a number of them (it is the same if there are many identical
copies of the same system), being the value of such a measurement the outcome from
the average of all the realizations considered. If the initial state is the same, in prin-
ciple one should obtain the same outcome and, therefore, the measurement would
be dispersionless. However, there are always certain deviations and therefore instead
of a point on a sample space described by the system degrees of freedom involved
in such a measurement, one would describe the outcome by a certain density distri-
bution function, thus making use of statistical mechanics. Second, consider now
a (classical) fluid. In principle, it is constituted by many different particles (e.g.,
atoms, ions, molecules, etc.), all the degrees of freedom being described by a set
of differential coupled equations, with as many equations as degrees of freedom
are involved. If one is not interested in a microscopic description of the fluid, but
in a macroscopic one, instead of using such systems of equations, the well-known
Euler or Navier–Stokes equations would be used, which describe phenomenologi-
cally the evolution of a continuous fluid without paying any attention to the particular
(microscopic) dynamics of its constituents. This is essentially the basis of classical
hydrodynamics. Now, in this latter case, any experimental study is carried out by
putting some particles, namely tracer particles, in the fluid, so that they can help us
to visualize its flow dynamics by moving along streamlines, i.e., lines along which
the fluid current goes or energy is transported. For example, if the fluid is gaseous,
one can use smoke; if it is a liquid, one can make use of tinny floating particles, e.g.,
pollen or charcoal dust, or another liquid, e.g., ink. In the case of the hydrodynamical
approaches utilized to the universe dynamics in cosmology, the tracer particles can
be stars, galaxies or clusters.
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After this brief but worthy parenthesis, it is interesting to go back again to Bohmian
mechanics and the meaning of a quantum particle there. In principle, by looking at
one of those diffraction experiments carried out with electrons [67] or atoms [68],
one notices that these quantum particles behave as in the first classical case, i.e., a
single measurement or detection is meaningless, and many of them are necessary
in order to visualize the diffraction pattern and then obtain information either about
the diffracted particle or the diffracting object. In other words, individual particles
behave like individual point-like particles, though their distributions displays a wave-
like behavior, in accordance with Schrödinger’s equation or its Bohmian equivalents
(6.2). It is therefore clear that ensemble properties need of an ensemble description,
i.e., a density distribution function, whose role is played in quantum mechanics by
the probability density or, at a more elementary level, the wave function. This is
in agreement with Born’s statistical interpretation of quantum mechanics. However,
if (individual) particles are regarded as moving along single trajectories, are these
trajectories the ones obtained from (6.6)? Bohmian trajectories reproduce all the
features of quantum mechanics and, therefore, one would be tempted to think that
this is so. However, Bohmian equations are regarded as hydrodynamic equations,
the corresponding trajectories obtained from (6.6) can (should) not be regarded as
the trajectories pursued by real electrons, but rather as streamlines associated with
the corresponding quantum fluid or paths along which quantum probability flows.
Electrons may move or not like that, basically depending on the laminar or turbu-
lent regimen displayed by the fluid, but surely not exactly as Bohmian trajectories.
In this sense, it could be said that a Bohmian particle is a particle that obeys a
Bohmian dynamics. Such a particle allows us to infer dynamical properties of the
quantum fluid, which are usually “hidden when studied by means of the wave func-
tion formalism (see below). Therefore, Bohmian particles are the quantum equivalent
of classical tracer particles.

To conclude this discussion, it is worth noticing that, although Bohmian mechanics
applies to matter particles, trajectories for photons (see Chap. 7) have recently
been inferred experimentally by means of weak measurements [208]. These exper-
iments are in accordance with the Bohmian mechanics grounded on weak values
and Bayesianism proposed by Wiseman [209], and could open new directions for
Bohmian mechanics. In particular, with the information they provide it is possible
to infer the paths of quantum trajectories and therefore to obtain new insights of the
dynamics involved in quantum processes and phenomena.
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Chapter 7
Trajectories in Optics

7.1 Introduction

As seen in Sect. 4.1, the back and forth debate about the nature of light, wave or
corpuscle, lasted for quite a long time, ending with the complementarity principle.
The discussion about the nature of interactions also developed alongside, from which
the idea of field or force field came out. During his investigations on magnetism,
Faraday realized about the importance of a field as a physical object. He noticed
that electric and magnetic forces can be described as an effect produced by the pres-
ence of the corresponding fields, which are the entities that eventually govern the
motion of particles (through lines of force). Actually, not only as responsible for
particle motion, but Faraday also conferred them an independent physical reality
based on the empirical fact that they carry energy. Later on, these ideas would influ-
ence Maxwell in his development of the first unified field theory in physics, namely
the electromagnetic theory, based on a set of equations describing the dynamics of
the electric and magnetic fields or, in brief, the electromagnetic field. By the end
of the XIXth century, this field was understood as a collection of two vector fields
in space—nowadays, it is assumed to be a single antisymmetric 2nd-rank tensor
field in spacetime. Now, the introduction of the concept of field in optics (and, in
general, in electromagnetism) results very interesting, for it brings this theory closer
to quantum mechanics.

When studying interference and diffraction phenomena (see Sect. 4.3), the concept
of ray can be used with the meaning of an auxiliary line connecting two end points
regardless of its physical “reality”. However, it can also be considered as the “actual”
path pursued by light to go from one point to another, as happens when talking
about waveguides (see Sect. 4.4). This distinction—as a tool or as a physical path—
is nonetheless rather arbitrary; in the end the ray is not other thing than a model
to describe the propagation of light according to a Newtonian conception. This
description results very practical to connect the wave propagation around obstacles
or through apertures with the intuitive idea of the rectilinear propagation, reflec-
tion or refraction of light. Indeed, this predates Newton and can be traced back to
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Euclid [1] and Hero of Alexandria [2, 3]. The former posed the basis of the geomet-
rical treatment of light, while the latter first proposed a principle of minimum
distance (when a light ray is reflected by a mirror, the path taken from the object
to the observer’s eye is the shortest path from all possible ones), thus anticipating
Fermat [4]. Nevertheless, the ray model is an approximate description, valid only
whenever the wavelength λ of the incident light is negligible compared with the
dimensions of the objects it meets during its propagation (actually, the limit λ→ 0).
This is the field of geometric optics, the short wavelength limit of physical optics or
wave optics.

A brief account on geometric optics results interesting because, in spite of its
approximate description of optical phenomena, it allows us to understand them in a
very intuitive manner (with respect to our everyday experience of these phenomena,
based on objects following well-defined paths). In order to go from the source to the
illuminated object, light pursues a straight line unless the medium it traverses has
a nonhomogeneous refractive index. In such a case, there is a curvature of the light
ray, as happens with common mirages or also the mirages of astronomical objects,
which make the size of these objects to look slightly higher above the horizon [5].
This bending or deflection of light rays can also be found when they pass near heavy
celestial bodies due to the gravity of the latter [6], this process being known as grav-
itational lensing [7–9]. This strongly reminds us the behavior of particle trajectories
under the action of potentials. Indeed, not only the mathematical description of both
the curvature of light rays and the paths followed by classical particles are similar,
but conceptually both rest on the same principle: Fermat’s principle [4], which rules
the path of light rays, transforms into Hamilton’s least action principle when it is
used to describe the dynamics of matter particles [10].

Despite the interpretative and conceptual advantages of the ray-based concept of
light, this description fails when one tries to interpret the phenomena of physical
optics—this concept can be taken into account to obtain diffraction and interference
patterns, but such rays do not provide us with any clue on the way how the electro-
magnetic energy flows. The reason for this is that these rays do not follow electromag-
netic energy streamlines. In order to understand this concept, let us consider for a
while the quantum mechanical behavior of matter particles. Matter wave diffrac-
tion was observed long ago, starting with Davisson and Germer [11] and Stern
et al. [12–15] around the 1930s, who studied electron and rare–gas–atom diffrac-
tion from crystals and surfaces. Nowadays, experiments range from medium-sized
molecules [16, 17] to objects that can already be considered mesoscopic-sized
[18–23]. In this kind of experiments, the electronic, atomic or molecular beams
used are very intense. The particle flux per area unit and time unit is so large that
no individual (electron, atom or molecule) arrivals can then be detected, but a rela-
tively high intensity. On the contrary, there is another type of recent experiments,
where the intensity is so small that particles can be collected basically one by one
[24, 25]. This kind of experiments constitutes a nice manifestation of the statistical
nature of quantum mechanics [26–29], where particles distribute according to the
quantum probability density in the limit of a large number of detections. In the case
of light, some recent experiments [30, 31] have shown that the typical interference
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patterns described by wave optics can be reconstructed from low intensity beams,
i.e., single photon counts. In the case of matter waves, the individual evolution of
particles can be described by means of Bohmian mechanics; in the case of light, it is
clear that the usual concept of ray is not enough to describe the appearance of inter-
ference and diffraction patterns, but the model has to incorporate the wavy features of
light. This is precisely the purpose behind the hydrodynamical formulation of elec-
tromagnetism [32–36]. Although the photon is a massless “quantum” particle and
this entails conceptual troubles regarding the definition of an appropriate associated
wave function [37], this formulation shows that the evolution of electromagnetic
fields can be understood as the propagation of a fluid [33–48]. Within this scenario,
similar in spirit to Madelung’s approach to Schrödinger’s wave mechanics [49],
a trajectory-based picture of standard wave optics is possible. This representation
arises (statistically) when the number of photon paths (detections) becomes relatively
large [50]. Actually, this approach may increase its relevance after two recent exper-
iments dealing with photon detection by weak measurements (see Chap. 5 and
Appendix B). In one of them, a technique is reported to directly measure the photon
wave function [51], while in the other, average photon trajectories are inferred exper-
imentally from Young’s two-slit experiment [52].

7.2 Geometric Optics: The Optics of Rays

There are circumstances where the propagation of light (or, in general, any form of
electromagnetic radiation) can be described in a good approximation by neglecting its
wavelength. For example, when sunlight illuminates an object, a sharp-edged shadow
is observed, i.e., a shadow with very well-defined boundaries. This is the so-called
“geometric shadow” and the model that allows us to describe the formation of these
shadows as well as any other optical phenomenon with the “language” of geometry
is geometric optics. Within this model, based on assuming the limit λ→ 0 (λ being
the light wavelength), the basic element is the concept of ray, the path pursued by
light when it travels from one space point to another one. This approximate model
is strongly connected to our perception of well-defined shadows. This perception is
based on the fact that usually the details of the boundaries between light and shadow
cannot be appreciated, although such boundaries actually consist of a succession
of alternating darker and lighter diffraction bands covering an extension of a few
wavelengths. In the case of sunlight, in the visible range of the electromagnetic
spectrum, the wavelength is negligible compared to the size of the objects illuminated.
Therefore, such a diffraction effect cannot be perceived and it leads us to observe
sharp-edged, geometric shadows.

The basic equation of geometric optics is the so-called eikonal equation, as
first shown by Sommerfeld and Runge in 1911 [53], who reached this equation
from the scalar wave equation in the limit λ → 0. Here this procedure [54] will
also be followed due to its similarity to the way how other important results are
derived in optics and quantum mechanics, as seen in previous chapters (a more

http://dx.doi.org/10.1007/978-3-642-18092-7_5
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complete derivation can be done starting from Maxwell’s equations, which take
into account the vectorial nature of the electromagnetic field [55, 56]). Thus, let us
assume an electromagnetic field in an inhomogeneous field (i.e., with refractive index
depending on position). This field can be obtained from the scalar wave equation (4.7)
expressed as

∇2Ψ (r, t)− n2(r)
c2

∂2Ψ (r, t)

∂t2 = 0, (7.1)

where v(r) = c/n(r) is the local value of the speed of light within the medium
traversed. Assuming the refractive index is continuous and smoothly varying with
position, a JWKB-like solution for (7.1) can be considered (see Sect. 7.3),

Ψ (r, t) = A(r)ei[kS(r)−ωt], (7.2)

where k = ω/c = 2π/λ. In (7.2), the (real-valued) functions A and S have to be
determined. Substituting (7.2) into (7.1), and then rearranging terms, yields

∇2 A +
[
n2 − (∇S)2

]
k2 A = 0, (7.3a)

∇ · (A2∇S) = 0, (7.3b)

which are the optical analog of (3.131b) and (3.131a), respectively.
In the limit of geometric optics, the wavelength of light is assumed to be negligible

compared with the dimensions of interest, but also with respect to the local changes
of the refractive index. In other words, the envelope A has to vary slowly compared
with λ, which is the (spatial) scale measuring the local changes (oscillations) of the
phase kS. This means that, for the distances of interest (in general, much greater than
λ), ∇2 A ≈ 0 and, therefore,

(∇S)2 = n2. (7.4)

This is the eikonal equation, the basic equation of geometric optics. In this equation,
S is the eikonal, a direct extension of the concept of optical path (remember from
Chap. 4 that the phase appeared as a function of the coordinates), but not a path
or ray itself. Accordingly, a wavefront is an eikonal such that S(r) = constant.
Equation (7.4) can also be expressed as

∇S = nŝ, (7.5)

where ŝ(r) is a unit vector pointing (at a position r) along the direction perpendicular
to the surface or wavefront S or, equivalently, along the direction along which S

http://dx.doi.org/10.1007/978-3-642-18092-7_4
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propagates (at r). The wavefront can be then obtained once the local refractive index
n(r) and a certain (initial) constant wavefront S0 are given.

Once the wavefronts are known, one can determine the path followed by a ray.
Rays are continuous curves, everywhere parallel to the local direction indicated by
ŝ and perpendicular to wavefronts. Indeed, if r denotes the position of a point on a
ray, unitary displacements along the ray with respect to its arc-length s will be equal
to ŝ (i.e., dr/ds = ŝ). Therefore, from (7.5),

n
dr
ds
= ∇S. (7.6)

This is the equation of rays of geometric optics. In order to understand the physical
meaning of ray, consider the time-averaged1 Poynting vector P(r) [56, 57] (see
Sect. 7.5). In the limit of geometric optics, this vector can be expressed as

P = c

n2 U∇S = Uv, (7.7)

where U (r) is the time-averaged electromagnetic energy density and v = vŝ =
(c/n)ŝ. According to (7.7), the time-averaged Poynting vector (i.e., the flow of
electromagnetic energy carried by light or, in general, an electromagnetic field)
propagates along the direction indicated by the velocity field v, parallel to ŝ and
perpendicular to the wavefront S. From the second equality in (7.7), an alternative
form for the equation of rays can be defined, as

dr
dτ
= v, (7.8)

which is in terms of a proper time τ (ds = (c/n)dτ ). From (7.8), which is totally
equivalent to (7.6), but considering displacements along the ray path instead of path
arc-lengths, it is apparent that light rays are just streamlines along which electro-
magnetic energy flows.

Equation (7.6) involves the eikonal. The path pursued by a ray can also be deter-
mined without taking the eikonal into account as follows. The directional derivative
along the ray can be expressed as

d

ds
= ŝ · ∇. (7.9)

Using (7.6) and (7.5), (7.9) becomes

1 For the sake of simplicity, here time-averaged quantities will be assumed in order to avoid
time-dependence. More specifically, this allows us to describe stationary electromagnetic fluxes
associated with light (electromagnetic radiation in the visible range of the spectrum), neglecting
the fast oscillations of the corresponding electric and magnetic fields. However, in general, the
formulations presented in this chapter can also be applied to describe the evolution of time-dependent
electromagnetic fields.
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d

ds

(
n

dr
ds

)
= ∇n. (7.10)

Therefore, if the refractive index is known the ray path can be obtained by solving
either (7.10) or, equivalently, the set of coupled equations

dr
ds
= ŝ, (7.11a)

d

ds

(
nŝ
) = ∇n, (7.11b)

with initial conditions r0 and ŝ0. As it is apparent after a quick look back to Chap. 1,
the following strong connections or analogies are found:

• Equation (7.6) and Jacobi’s law of motion (1.12a).
• Equation (7.10) and Newton’s equation of motion (1.5).
• Equation (7.11) and Hamilton’s equations of motion (1.8).

Indeed, classical mechanics is often considered the same limit approximation to
quantum mechanics as geometric optics is a limit for wave optics.

As an example to illustrate how rays arise, consider a homogeneous medium
(constant n) and a propagating plane wavefront whose normal with respect to some
prefixed origin is defined by the direction cosines α, β and γ . According to (7.5),
the eikonal will be

S(r) = S0 + n(αx + βy + γz), (7.12)

while the rays are any straight line characterized by a slope along the direction
ŝ = αî+ β ĵ+ γk̂. In the case of the ray path, (7.6) becomes

d ŝ
ds
= 0, (7.13)

which means that ŝ = ŝ0, i.e., the ray follows a straight line.
Once S is known along the ŝ direction, the component of ∇A along the

same direction can also be found from (7.3a), since this equation can be again
expressed as

1

A

d A

ds
= −1

2

∇ · (nŝ)
n

. (7.14)

Thus, the variation of the amplitude A along a particular ray can be determined, but not
the transversal change when moving from one ray to another, where discontinuities
(singularities) in A may actually appear.

http://dx.doi.org/10.1007/978-3-642-18092-7_1
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7.2.1 Fermat’s Principle

The formal grounds of geometric optics lay on Fermat’s principle [4]. According
to this principle, the path followed by a ray when it goes from one space point to
another is such that it makes stationary (usually, a minimum) the time of transit of the
associated wave. From the calculus of variations [57] (see Appendix A), a necessary
and sufficient condition for the definite integral

I (g) ≡
∫ σ2

σ1

Fdσ (7.15)

to be an extremum or stationary value (maximum, minimum or inflection point with
zero slope) is that the Euler–Lagrange differential equation

∂F

∂g
− d

dσ

∂F

∂g′
= 0 (7.16)

is satisfied for the function F[g(σ ), g′(σ ); σ ] of the independent variable σ and the
unknown functions g(σ ) and g′(σ ) ≡ dg/dσ , also subject to the constraint that g has
some prescribed values at σ1 and σ2. In the case of Fermat’s principle, I represents
the elapsed time for a wave to go from one prescribed point A to another one B.
This transit time for the wave to propagate along the path connecting the two points,
A and B, is

Δt =
∫ B

A
dt =

∫ B

A

n(r)
c

ds, (7.17)

with ds2 = dx2 + dy2 + dz2. Since the transit time depends explicitly on the path
considered, (7.17) can be put in terms of a certain parameter σ which measures the
distance along any arbitrary path and is such that σ(A) = 0 and σ(B) = 1, for
convenience. With this, (7.17) becomes

Δt =
∫ 1

0
F(x, y, z, x ′, y′, z′)dσ =

∫ 1

0

n(x, y, z)

c

√
x ′2 + y′2 + z′2dσ, (7.18)

with x ′ = dx/dσ and the same for y′ and z′. The Euler–Lagrange equation for the
x-coordinate is then

√
x ′2 + y′2 + z′2 ∂n

∂x
− d

dσ

(
nx ′√

x ′2 + y′2 + z′2

)
= 0, (7.19)

which can be conveniently rearranged to yield

d(nα)

ds
= ∂n

∂x
, (7.20)
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where α = x ′/
√

x ′2 + y′2 + z′2 is the direction cosine of the vector r′ along the
x-axis (i.e., the angle associated with the path element ds = √x ′2 + y′2 + z′2dσ ).
As can be readily noticed, by proceeding in the same way with y and z, one reaches
(7.6). This shows the equivalence between the ray equation obtained from geometric
optics and its formal derivation appealing to Fermat’s principle.

7.2.2 Hamiltonian Analogy and Optical Paths

The success reached by Fermat in optics led Hamilton in 1834 to rationalize classical
mechanics in terms of the language of optics, i.e., introducing ideas such as Fermat’s
principle and the surfaces of constant phase (namely, wavefronts S). Hamilton real-
ized that there is a certain analogy between the Newtonian trajectories, described
by particles under the action of an external potential, and the optical paths pursued
by light rays in continuum media with variable refractive index. In this sense, clas-
sical mechanics can be seen as the limit of a wavy motion in a configuration space
where the trajectories are perpendicular to surfaces with constant action, as well
as the geometric optics is the limit of the wave optics—based on it, Schrödinger
would later on derive his wave version of quantum mechanics. This correspon-
dence between classical mechanics and optics is known as the Hamiltonian analogy
[56, 58]. When this analogy is used in optics (the other way around), it is known as
the Lagrangian Formulation of optics, which constitutes a useful tool to compute,
for example, the path pursued by rays in nonhomogeneous media [10, 59–62].

The Hamiltonian analogy remained in a sort of impasse until 1927, when Busch
[63–65] used it to explain the focalizing effect of electromagnetic fields on rays in
terms of optics. Almost by the same time, Schrödinger used the Hamiltonian analogy
to derive his wave version of quantum mechanics (see Sect. 3.2.1), passing from
geometric optics to the wave optics of matter particles and establishing a more direct
meaning to de Broglie’s concept of wavelength for matter particles. Furthermore,
Schrödinger also used this tool to argue that the concept of classical trajectory is not
compatible with wave mechanics.

The application of the Hamiltonian analogy to the derivation of Schrödinger’s
equation was seen in Sect. 3.2.1. Now its use will be illustrated within a different
context, showing how the trajectory of a charged particle can be obtained from a
typical optical problem by introducing a point-to-point variable refractive index.
Thus, consider an electron moving under the action of a time-independent electric
field, E. The electron motion is ruled by Newton’s laws,

dp
dt
= eE = −∇V, (7.21)

where V is the electric potential generated by the field E and p is the electron
momentum. This equation can be generalized to any velocity v by means of the
expression for the relativistic momentum,

http://dx.doi.org/10.1007/978-3-642-18092-7_3
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p = mv√
1− β2

, (7.22)

where β = v/c, c is the speed of light and m is the electron mass at rest. Equa-
tion (7.21) can be decomposed in two scalar equations according to the tangent and
perpendicular directions of the electron motion. Thus, if p = pu‖ and v = vu‖,
where u‖ is a unit vector in the direction of the electron motion, then

dp
dt
= dp

dt
u‖ + pv

du‖
du

. (7.23)

Here, du‖/du is a vector pointing along the normal direction to the electron motion,
with modulus equal to the curvature of the trajectory, 1/ρ.Hence it can be expressed
as u⊥/ρ, with u⊥ being the unit vector in this direction. Substituting this into (7.23)
yields

dp
dt
= dp

dt
u‖ + pv

ρ
u⊥, (7.24)

which, when compared with (7.21), shows that the center of curvature of the trajectory
will be contained (at each time) by the plane defined by tangent to the trajectory, u‖,
and the direction of the electric field. Finally, projecting ∇V onto both the tangent
and normal directions of motion, u‖ and u⊥, respectively, the electron equations of
motion are

dp

dt
= −u‖ · ∇V, (7.25a)

pv

ρ
= −u⊥ · ∇V . (7.25b)

Note that (7.25a) gives the electron position as a function of time along its trajectory,
while (7.25b) is the trajectory equation.

After multiplying (7.25a) by v and then integrating the resulting equation under
the condition that, initially, the electron has an energy E and is at rest,

E = mc2√
1− β2

+ V, (7.26)

or, equivalently,

E = mc2

√
1+

( p

mc

)2 + V . (7.27)

Thus, the electron momentum is expressed as a function of the coordinates,

p = mc

√[
1+ (E0 − V )

mc2

]2

− 1, (7.28)
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where mc2 is the electron energy at rest and E0 its non-relativistic energy,
E =mc2+ E0. From (7.28), note how in the non-relativistic case β 	 1 the
momentum approaches the well-known kinematic relation p = √2m(E0 − V ).

Now, consider the component (7.25b), where v and V can be expressed as func-
tions of p through (7.22) and (7.27). A very simple law is obtained,

1

ρ
= u⊥ · ∇ p

p
= u⊥ · ∇(ln p). (7.29)

This relation is identical to the equation obtained in geometric optics to describe the
propagation of rays in nonhomogeneous media when the momentum p is substituted
by the medium refractive index n,

1

ρ
= u⊥ · ∇(log n). (7.30)

An immediate consequence of this result is the appearance of a formal relationship
or analogy between electron trajectories and light rays, with the momentum being
analogous to a variable refractive index. Since ρ is always positive, when a light
ray moves within a variable refractive index medium, it bends over towards those
regions with increasing n. Similarly, electrons will move towards regions with larger
momentum.

7.3 The JWKB Approximation

The Jeffreys–Wentzel–Kramers–Brillouin approximation [66–70] or, in brief, JWKB
approximation, also constitutes an intermediate step between the optics of rays and
the wave optics. In brief, this approximation essentially consists of “dressing” the rays
of geometric optics with a wave and, therefore, see how (plane) waves developing
along a set of rays give rise to the phenomena of wave optics. From a more quantitative
viewpoint, this approximation allows us to find approximate solutions of a wave
equation (regardless of what the wave is describing) in nonhomogeneous media
with a gradual variation of the inhomogeneity (i.e., no abrupt discontinuities). This
approximation and its application in quantum mechanics already appeared in Chap. 3.
In particular, it was formerly used to describe tunneling in disintegration processes
through α-particle decay [71, 72] and then further developed to find solutions of both
the time-independent and the time-dependent Schrödinger equations.

In order to understand how this approximation works in optics, let the one-
dimensional scalar wave equation be

∂2Ψ (x, t)

∂x2 − 1

v2(x)

∂2Ψ (x, t)

∂t2 = 0, (7.31)

where the propagation velocity v depends on the position, as it happens when dealing
with nonhomogeneous media (space-dependent refractive indexes). The purpose of

http://dx.doi.org/10.1007/978-3-642-18092-7_3
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the JWKB approximation is to provide an approximate solution to (7.31) for an
arbitrary function proceeding as follows. If v was independent of the position, a
solution of this equation would be a traveling wave,

Ψ (x, t) = Aei(kx−ωt), (7.32)

with k = ω/c.Now, if the medium properties slowly vary with position, the solution
to (7.31) should look pretty much like (7.32), but with the quantities A and k being
dependent on the position. Thus, consider a solution of the form

Ψ (x, t) = A(x)ei[S(x)−ωt]. (7.33)

After substituting this ansatz into (7.31), rearranging terms and then separating the
real and imaginary parts of the resulting equation, one finds

d2 A

dx2 +
[
ω2

v2(x)
−
(

d S

dx

)2
]

A = 0, (7.34a)

2
d S

dx

d A

dx
+ A

d2S

dx2 = 0. (7.34b)

Solving (7.31) is therefore equivalent to find the functions A(x) and S(x) which
satisfy this system of real, coupled differential equations. In a homogeneous medium,
d2 A/dx2 = 0. Thus, if the medium properties vary slowly with x , it can be assumed
that d2 A/dx2 ≈ 0 and, therefore, at a first approximation, from (7.34a),

d S

dx
≈ ω

v(x)
≡ k(x) = 2π

λ(x)
−→ S(x) ≈ 2π

∫ x

x0

dx

λ(x)
, (7.35)

where λ(x) is a local wavelength depending on position and x0 is some reference
point at which the amplitude of the wave is known. Substituting now (7.35) into
(7.34b),

A(x) = A(x0)

√
v(x)

v(x0)
, (7.36)

and replacing this result and (7.35) in (7.33) yields

Ψ (x, t) = A(x0)

√
v(x)

v(x0)
e

i
[ ∫ x

x0
k(x)dx−ωt

]
. (7.37)

As it can be noticed, the amplitude varies in proportion to the local wave velocity
and the phase depends on a local wavelength.

In order to find the range of validity of this approximation, let us consider that the
exact solution to (7.31) is such that
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d S

dx
= 2π

λ(x)
[1+ ε(x)] , (7.38)

where ε(x) is some perturbation dependent on position. Substituting (7.36) and (7.38)
into (7.34a) gives

(
1+ ε

2

)
ε = λλ′′

16π2 −
(λ′)2

32π2 , (7.39)

where λ′ ≡ dλ/dx . Under the assumption of a slowly varying medium with x , the
second term on the right-hand side of (7.39) is going to be negligible in comparison
to the former. Thus, considering ε is a small perturbation (i.e., |ε| 	 1),

|ε| ≈ (λ′)2

32π2 	 1. (7.40)

This condition can also be rewritten as δλ 	 4
√

2πδx . Accordingly, the JWKB
approximation is going to work well whenever the variations of the local wavelength
(δλ) are relatively small when compared with the spacial scales considered (δx).
Or, in other words, the variations of the wave velocity (which is a measure of the
properties of the medium) are very small over many wavelengths.

7.4 Optical Singularities: Caustics and Rainbows

Short wavelength fields are approximated by families of trajectories or rays which
are normal to wavefronts. Under certain conditions, such trajectories can be focused
in a given region of the space along envelopes where the number of rays is very high
(infinite intensity). These envelopes formed by the coalescence of rays are called
caustics and the deflection angles for which caustics occur are the rainbow angles.
Quoting Berry [73, 74]:

The caustic is one of the few things in geometrical optics that has any physical reality.
Wavefronts and rays are not realizable; they are just convenient symbols on which we can
hang our ideas. The caustic on the other hand is real and becomes visible by blowing a cloud
of smoke in the region of the focus of a lens.

On the other hand, it is precisely on caustics where the trajectory/ray picture breaks
down, since the wave equation only provides finite solutions for the intensity.

In many optical problems, the intensity is given by the square modulus of a general
Fraunhofer diffraction integral of the type

∫
g(x)eik f (x) (7.41)

and asymptotic approximations are obtained for very large values of k. These rapidly
oscillating integrals are then evaluated by the well known stationary phase method
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[75, 76]. The basic idea is to replace such an integral by a Gaussian integral around the
critical points or stationary phase points of f (x). If the phase is not pure imaginary,
the steepest descent approximation [56] to the corresponding integrals is applied.
When two or more stationary phase points coalesce on a caustic such methods for
the evaluation of integrals are no longer valid and the so-called catastrophe theory
developed mainly by Thom and Zeeman has to be applied [75, 77, 78]. So, in a
mathematical language, caustics correspond to singularities of gradient maps.

Very interesting and important work has been developed in connection with
the formation of diffraction patterns in particle-surface scattering problems. These
patterns show a close relation with rainbows and caustics [79, 80]. Generally
speaking, it could be said that caustics constitute the “skeleton” of diffraction patterns.
A more detailed account on these issues can be found in [81].

7.5 Hydrodynamical Trajectories in Optics: Photon Paths

The extensive use of such trajectory-based descriptions in problems involving matter
particles strikingly contrasts with its lack in analogous experiments with light or, for
a better analogy, with photons. In particular, this is quite remarkable by inspecting
the use of Bohmian mechanics to provide intuitive pictures of quantum processes in
the last years—as well as to develop alternative numerical tools aimed at describing
quantum properties without having to deal with the wave function first. In optics,
however, not much attention has been paid to the development of similar trajectory-
based pictures, except for the use of the rays from geometric optics (dressed by waves)
as a crude way to understand diffraction phenomena under different circumstances.
Obviously, this is not the way one should follow, since such rays make sense within
geometric optics, but not within wave optics. To some extent, this is analogous to the
mechanisms in terms of classical trajectories provided to explain quantum processes.
However, unlike quantum mechanics, finding an analogous to Bohmian mechanics
in optics is a more subtle issue, because it is connected with the need for finding
the analogous to the wave function. From a quick look at the literature [33, 34, 38,
39, 43–47], one readily notices that defining a wave function for a photon is not a
trivial issue, but something that gets directly into a thoughtful conceptual debate.
Nevertheless, Lundeen et al. [52] have recently reported a direct technique to detect
the photon wave function based on a combination of weak and strong measurements
on complementary observables, which might render some light on this debate.

Nevertheless, putting aside fundamental issues and adopting a more pragmatic
viewpoint, one can tackle the problem as follows. In optics it is well known that,
like quantum matter particles, the observed patterns also arise as a consequence of a
statistics of photons [51]. Indeed, some recent experiments [30–32] where the two-slit
interference pattern is reconstructed photon by photon show very nicely this behavior.
This is exactly the same observed in quantum mechanics if, instead of photons,
electrons, for example, are considered [24]. Now, in quantum mechanics, the pattern
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of spots is described by the probability density2 ρ = |Ψ |2, so the basic elements in
Bohmian mechanics are a “guiding” wave function Ψ and the hydrodynamical flow
carrying ρ throughout space, namely the probability current density J. In optics (and,
in general, in electromagnetism), the patterns displayed (i.e., the photon distributions)
are proportional to the electromagnetic energy (or energy density). Therefore, it is
reasonable to associate here the electromagnetic field with a sort of guiding field,
where the Poynting vector plays the role of the carrier of the electromagnetic energy
through space. This is one of the former ideas considered in the literature, which
can be traced back to Braunbek and Laukien [82] and Prosser [83, 84], and now
is again in fashion [85–90]. This approach, which will be described in more detail
throughout this Section, is based on a “classical” treatment of electromagnetism,
where one is in the limit of a large number of photons—i.e., the number of photon is
a non well-defined quantity, contrary to what happens in the limit of quantum optics
[51]. Similarly, Ghose et al. [91, 92] proposed a way to attack the problem of dealing
with photon trajectories, but within the relativistic limit.

To start with, consider an electromagnetic field in vacuum. The electric and
magnetic fields (components) can then be expressed as harmonic waves,

Ẽ(r, t) = E(r)e−iωt , H̃(r, t) = H(r)e−iωt . (7.42)

Without loss of generality, a stationary electromagnetic field will be assumed (see
footnote 1 in p. 235), although the formulation can also be applied to describe time-
dependent electromagnetic fields. Thus, from now on consider the time-averaged
electric and magnetic fields, thus avoiding the oscillating contribution (which does
not change the flow dynamics in this case). This is the same as only paying attention to
the spatial part of these fields, which satisfy the time-independent form of Maxwell’s
equations (4.1),

∇ · E(r) = 0, (7.43a)

∇ ·H(r) = 0, (7.43b)

∇ × E(r) = iωμ0H(r), (7.43c)

∇ ×H(r) = −iωε0E(r), (7.43d)

as well as the boundary conditions associated with the particular problem under
study. As in Chap. 4, in this Section the convention of complex electric and magnetic
fields will also be considered in order to highlight the similarities with matter waves,
although the same conclusions also hold for real fields. From (7.43) it can be readily
shown that both E(r) and H(r) satisfy the vector Helmholtz equations,

2 It is worth stressing that this is the case when dealing with single-count experiments. If experi-
ments are carried out with high intensity beams (constituted by either matter particles or photons),
the diffraction pattern is described by the transverse flux (cross-section), which is obtained from
the probability current density rather than from the probability density.

http://dx.doi.org/10.1007/978-3-642-18092-7_4
http://dx.doi.org/10.1007/978-3-642-18092-7_4
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∇2E(r)+ k2E(r) = 0, (7.44a)

∇2H(r)+ k2H(r) = 0, (7.44b)

with k = ω/c. These equations are the time-independent analogues of (4.2). The
electromagnetic energy flow lines are now obtained from the real part of the time-
averaged complex Poynting vector,

P(r) = 1

2
Re
{
E(r)×H∗(r)

}
, (7.45)

which describes the flow of the time-averaged electromagnetic energy density
through space,

U (r) = 1

4

[
ε0E(r) · E∗(r)+ μ0H(r) ·H∗(r)] , (7.46)

as the solutions or characteristics of the equation

dr
ds
= 1

c

P(r)
U (r)

, (7.47)

where ds is the infinitesimal element of arc-length or metric distance. The solutions
obtained from (7.47) can also be seen as rays in analogy to those derived from the
eikonal equation, but taking into account a very important difference: the former are
more general solutions which include wavy (diffraction) features. These general rays
which spread out are lines along which the electromagnetic energy flows (just as in
Bohmian mechanics quantum trajectories are lines along which probability flows,
as said in Sect. 6.5)—in this regard, although the rays from geometric optics may
also carry electromagnetic energy (when derived from the eikonal equation), they are
more localized paths. Also, within optical electromagnetism, since the electromag-
netic energy flows along these rays and, on the other hand, such an energy is carried
by photons, the concept of photon path [88] will be used when referring to them.
Of course, it is important to clarify that they should not be identified with the actual
path that a photon would follow, just as a Bohmian trajectory cannot not be iden-
tified with the real trajectory that a quantum particle would pursue (see discussion
in Sect. 6.5). Furthermore, notice that the rays or streamlines obtained from (7.47)
are stationary, i.e., they somehow remain “frozen” in space, because the electromag-
netic field is permanent (time-independent). If the time-dependence of the field was
considered, these rays would describe trajectories evolving in time, thus accounting
for the temporary dependence of the electromagnetic field, which would be therefore
represented by a kind of pulse of (electromagnetic) energy.

In order to find a functional form for (7.47), consider for the sake of simplicity
a problem characterized by symmetry such that the electric and magnetic fields are

http://dx.doi.org/10.1007/978-3-642-18092-7_4
http://dx.doi.org/10.1007/978-3-642-18092-7_6
http://dx.doi.org/10.1007/978-3-642-18092-7_6
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independent of the z-coordinate. From elementary electromagnetism [56], it is known
that a problem completely independent of one Cartesian coordinate is essentially
scalar, since it can be formulated in terms of a single dependent variable. Thus,
taking into account

∂H
∂z
= 0 = ∂E

∂z
(7.48)

in (7.43c) and (7.43d), two independent sets of equations are obtained,

∂Ez

∂y
= iω

ε0c2 Hx , (7.49a)

∂Ez

∂x
= − iω

ε0c2 Hy, (7.49b)

∂Hy

∂x
− ∂Hx

∂y
= −iωε0 Ez, (7.49c)

and

∂Hz

∂y
= −iωε0 Ex , (7.50a)

∂Hz

∂x
= iωε0 Ey, (7.50b)

∂Ey

∂x
− ∂Ex

∂y
= iω

ε0c2 Hz . (7.50c)

The set (7.49) only involves Hx , Hy and Ez, and therefore is commonly referred to
as a case of E-polarization. On the other hand, the set (7.50), which only involves
Ex , Ey and Hz, is referred to as H -polarization. More specifically, as it is inferred
from the two first lines of the set of equations (7.49), in the case of E-polarization the
electric field is polarized along the z-direction, while the magnetic field is confined
to the XY -plane, i.e., Ex = Ey = Hz = 0, with the components of the magnetic
field satisfying

Hx = − iε0c2

ω

∂Ez

∂y
, Hy = iε0c2

ω

∂Ez

∂x
. (7.51)

Substituting these expressions into (7.49c) yields

∂2 Ez

∂x2 +
∂2 Ez

∂y2 + k2 Ez = 0. (7.52)
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Thus,

EE (r) = E‖(r) = Ez ẑ, (7.53a)

HE (r) = H⊥(r) = Hx x̂ + Hy ŷ, (7.53b)

with Ez satisfying Helmholtz’s equation, according to (7.52), and where the symbols
‖ and ⊥ are used to specify which field is polarized parallel to the z-direction and
which one perpendicularly, respectively. Similarly, in the case of H -polarization the
magnetic field is polarized along the z direction and the electric one confined to the
plane XY , i.e., Hx = Hy = Ez = 0, with the components of the electric field being

Ex = i

ωε0

∂Hz

∂y
, Ey = − i

ωε0

∂Hz

∂x
. (7.54)

Substituting now these into (7.50c) yields

∂2 Hz

∂x2 +
∂2 Hz

∂y2 + k2 Hz = 0. (7.55)

This allows to characterize H -polarization as

EH (r) = E⊥(r) = Ex x̂ + Ey ŷ, (7.56a)

HH (r) = H‖(r) = Hz ẑ, (7.56b)

with Hz satisfying the Helmholtz equation (7.55). Therefore, any general (time-
independent) solution will be expressible as

E(r) = αE⊥(r)+ βeiφE‖(r) = iα

ωε0

[∇ ×H‖(r)
]+ βeiφE‖(r), (7.57a)

H(r) = βeiφH⊥(r)+ αH‖(r) = − iβeiφ

ωμ0

[∇ × E(r)‖
]+ αH‖(r), (7.57b)

where α and β are real quantities and the phase shift between both components is
given by φ.

Since Ez and Hz satisfy Helmholtz’s equation, consider that both are proportional
to a scalar field Ψ (r), which also satisfies Helmholtz’s equation, such that

H‖ = Ψ (r)ẑ, (7.58a)

E‖ = ωμ0

k
Ψ (r)ẑ, (7.58b)

where (7.43d) has been used to obtain the correct dimensionality in the right-hand
side of (7.58b). If (7.58) are substituted into (7.57), the latter relations become
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E(r) = iα

ωε0

∂Ψ

∂y
x̂ − iα

ωε0

∂Ψ

∂x
ŷ+ kβeiφ

ωε0
Ψ ẑ, (7.59a)

H(r) = − iβeiφ

k

∂Ψ

∂y
x̂ + iβeiφ

k

∂Ψ

∂x
ŷ+ αΨ ẑ, (7.59b)

with the time-dependent counterparts being

Ẽ(r, t) =
[

iα

ωε0

∂Ψ

∂y
x̂ − iα

ωε0

∂Ψ

∂x
ŷ+ kβeiφ

ωε0
Ψ ẑ
]

e−iωt , (7.60a)

H̃(r, t) =
[
− iβeiφ

k

∂Ψ

∂y
x̂ + iβeiφ

k

∂Ψ

∂x
ŷ+ αΨ ẑ

]
e−iωt . (7.60b)

Equations (7.60) are general time-dependent solutions for a problem which can be
described in terms of superpositions, such as (7.57a) and (7.57b). Once this set of
equations is established, the problem reduces to finding Ψ and its propagation along
x and y (remember that this set of equations is based upon the hypothesis that the
electric and magnetic fields do not depend on the z-coordinate), which is just a
boundary condition problem.

Next, different cases will be analyzed depending on the choice of the particular
form assigned to the electric and magnetic fields.

7.5.1 Polarized Plane Waves

Consider the electric and magnetic fields propagate along the y-direction. In this
case, the simplest form for Ψ is a plane wave,

Ψ (r) = eiky . (7.61)

Introducing it into (7.60) yields

Ẽ(r, t) = E(r)e−iωt =
(

k

ωε0

)[
−αeiky x̂ + βei(ky+φ)ẑ

]
e−iωt , (7.62a)

H̃(r, t) = H(r)e−iωt =
[
βei(ky+φ)x̂ + αeiky ẑ

]
e−iωt . (7.62b)

In these expressions, the effect of polarization on the fields can be explicitly observed.
This effect eventually leads to the particular topologies exhibited by the photon paths.

In (7.62), it was already inferred how polarization is going to play an important
role in the interference patterns observed and, therefore, in the topology displayed
by the photon paths. Let us consider the electric field (7.62a) (the magnetic field
shows the same polarization properties because of their relationship), whose real
components are
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Ẽr
x = ax cos(ky − ωt), (7.63a)

Ẽr
z = az cos(ky − ωt + φ), (7.63b)

where ax =−(k/ωε0)α and az = (k/ωε0)β. These field components can be recast as

Ẽr
x

ax
cosφ − Ẽr

z

az
= sin(ky − ωt) sin φ, (7.64a)

Ẽr
x

ax
sin φ = cos(ky − ωt) sin φ. (7.64b)

After squaring and rearranging terms in these expressions, they can be recast in

(
Ẽr

x

ax

)2

+
(

Ẽr
z

az

)2

− 2

(
Ẽr

x

ax

)(
Ẽr

z

az

)
cosφ = sin2 φ. (7.65)

According to (7.65) several cases are possible depending on the value of the phase
shift φ:

1. When φ = 0 or π ,

(
Ẽr

x

ax
∓ Ẽr

z

az

)2

= 0 ⇒ Ẽr
x

ax
= ± Ẽr

z

az
. (7.66)

This is the case of linear polarization, which is independent of the particular value
of both α and β.

2. When φ = ±π/2,

(
Ẽr

x

ax

)2

+
(

Ẽr
z

az

)2

= 1. (7.67)

This is the case of elliptic polarization. Here, in particular, if α = β, there is
circular polarization.

3. For any other value of φ, there is always elliptic polarization.

The particular values of φ, α and β defining the polarization state of the incident
beam are very important regarding the observation of interference patterns in two-
slit interference experiments with polarized light [93–96], for they are ruled by the
so-called Arago–Fresnel laws [97–99]. But they are also going to be very important
with respect to the topology of the corresponding photon paths, as shown below.

Regarding the photon paths, they are now obtained from the Poynting vector,

P(r) = 1

2
Re
{
E(r)×H∗(r)

} = 1

2

(
k

ωε0

)
(α2 + β2)ŷ, (7.68)
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and the electromagnetic energy density,

U (r) = 1

4

[
ε0E(r) · E∗(r)+ μ0H(r) ·H∗(r)] = μ0

2
(α2 + β2), (7.69)

where the electric and magnetic fields here refer to the time-independent parts of
(7.62). Substituting (7.68) and (7.69) into (7.47),

dr
ds
= ŷ, (7.70)

which, after integration, yields

x(s) = x0, z(s) = z0, (7.71a)

y(s) = y0 + s. (7.71b)

That is, provided there are no variations of the position in x or z, the photon paths
are straight lines parallel to the y-axis. That is, the electromagnetic energy evolves as
predicted by geometric optics, as a flow that evolves parallel to the y-axis regardless
of the polarization state.

7.5.2 Young’s Two-Slit Experiment

Young’s two-slit experiment is viewed as a paradigm of interference phenomena.
It is therefore worth being treated here from the viewpoint of photon paths. In this
case, the electromagnetic scalar field Ψ behind the two slits can be described, in
general, as

Ψ (r) = c1ψ1(r)+ c2ψ2(r), (7.72)

whereψ1 andψ2 represent the electromagnetic beams leaving each slit. Substituting
this field into (7.59), and then into (7.45), one thus obtains the photon paths corre-
sponding to two-slit diffraction process. Now, depending on the polarization state
of each outgoing beam, different cases can be discussed. Here, in particular, the
case where both partial beams leave the slits with the same polarization state will be
analyzed. This allows to consider Ψ as a whole instead of dealing with ψ1 and ψ2
explicitly all the way.

Regarding the slits, assume that both are on a screen parallel to the X Z -plane
and placed at y = 0. The slits are parallel to the z-axis and their width along this
direction is much larger than along the x-direction (i.e., wz � wx ). Because of this
assumption, as in Sect. 7.5.1, the electromagnetic energy should be independent of
the z-coordinate. That is, except near the upper or lower borders of the slits, one
should observe exactly the same interference pattern regardless of this coordinate.
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Taking such assumptions into account, after substitution of (7.59) into (7.45), the
components of the Poynting vector along the different directions can be
expressed as

Px = i(α2 + β2)

4ωε0

(
Ψ
∂Ψ ∗

∂x
− Ψ ∗ ∂Ψ

∂x

)
, (7.73a)

Py = i(α2 + β2)

4ωε0

(
Ψ
∂Ψ ∗

∂y
− Ψ ∗ ∂Ψ

∂y

)
, (7.73b)

Pz = iαβ sin φ

2kωε0

(
∂Ψ

∂x

∂Ψ ∗

∂y
− ∂Ψ
∂y

∂Ψ ∗

∂x

)
. (7.73c)

Proceeding similarly with (7.46) leads us to the electromagnetic energy density,

U = (α2 + β2)

4ω2ε0

(
∂Ψ

∂x

∂Ψ ∗

∂x
+ ∂Ψ
∂y

∂Ψ ∗

∂y
+ k2ΨΨ ∗

)
, (7.74)

which determines the interference pattern at the observation screen. Since the polar-
ization part (prefactor in terms of α and β) and the space part (depending on Ψ ) are
factorized in (7.74), the interference pattern observed will not depend on the polariza-
tion state, in agreement with Arago–Fresnel laws [98–100]. Substituting now these
equations into (7.47) the corresponding path equations along each direction are

dx

ds
= ik

⎛
⎜⎜⎝

Ψ
∂Ψ ∗

∂x
− Ψ ∗ ∂Ψ

∂x
∂Ψ

∂x

∂Ψ ∗

∂x
+ ∂Ψ
∂y

∂Ψ ∗

∂y
+ k2ΨΨ ∗

⎞
⎟⎟⎠ , (7.75a)

dy

ds
= ik

⎛
⎜⎜⎝

Ψ
∂Ψ ∗

∂y
− Ψ ∗ ∂Ψ

∂y
∂Ψ

∂x

∂Ψ ∗

∂x
+ ∂Ψ
∂y

∂Ψ ∗

∂y
+ k2ΨΨ ∗

⎞
⎟⎟⎠ , (7.75b)

dz

ds
= 2iαβ sin φ

(α2 + β2)

⎛
⎜⎜⎝

∂Ψ

∂x

∂Ψ ∗

∂y
− ∂Ψ
∂y

∂Ψ ∗

∂x
∂Ψ

∂x

∂Ψ ∗

∂x
+ ∂Ψ
∂y

∂Ψ ∗

∂y
+ k2ΨΨ ∗

⎞
⎟⎟⎠ . (7.75c)

As can be noticed in these expressions, all the information about the polarization state
of both interfering beams is contained in the prefactor of (7.75c). This is the reason
why in the case here analyzed the particular form of Ψ (a coherent superposition) is
not relevant. In other words, this simply means that, if both diffracted beams have
the same polarization state, they will give rise to interference, in accordance with
Arago–Fresnel laws.
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For linear polarization [87], (7.75c) vanishes and the photon path equations can
be readily solved by simply parameterizing, for example, y as a function of x , i.e.,

dy

dx
=

(
Ψ
∂Ψ ∗

∂y
− Ψ ∗ ∂Ψ

∂y

)
(
Ψ
∂Ψ ∗

∂x
− Ψ ∗ ∂Ψ

∂x

) , (7.76)

while the solution of (7.75c) is simply z = z0 (i.e., no motion or evolution along
the z-direction). On the contrary, in the case of elliptic (or circular) polarization, the
z-component does play an important role, as can be noticed when the photon path
equations are computed,

dy

dx
=

(
Ψ
∂Ψ ∗

∂y
− Ψ ∗ ∂Ψ

∂y

)
(
Ψ
∂Ψ ∗

∂x
− Ψ ∗ ∂Ψ

∂x

) , (7.77a)

dz

dx
= 2αβ sin φ

(α2 + β2)k

⎡
⎢⎢⎣
∂Ψ

∂x

∂Ψ ∗

∂y
− ∂Ψ
∂y

∂Ψ ∗

∂x

Ψ
∂Ψ ∗

∂x
− Ψ ∗ ∂Ψ

∂x

⎤
⎥⎥⎦ . (7.77b)

As can be seen, (7.77a) remains as in the case of linear polarization, described by
(7.76). However, although neither the electric field nor the magnetic one depend on
the z-coordinate, the photon paths are going to display features in this direction as
an effect of having elliptical polarization, which only vanish for linear polarization,
when φ = 0 or π. This means that the projection of the photon paths onto the XY -
plane is exactly as in the case of linear polarization (the typical trajectories for the
two-slit experiment [88]). To understand which kind of motion is expected in this
direction (or, in other words, how it is going to manifest in the corresponding photon
paths), let us go back to (7.73c). Rearranging terms and using (7.73a) and (7.73b),
this equation can be rewritten as

Pz = αβ sin φ

(α2 + β2)k

(
∂Sy

∂x
− ∂Sx

∂y

)
=
[

αβ

(α2 + β2)k

]
ζ · ẑ, (7.78)

where

ζ ≡

⎛
⎜⎜⎝

x̂ ŷ ẑ
∂

∂x

∂

∂y
0

Sx Sy 0

⎞
⎟⎟⎠ . (7.79)

According to (7.78), the presence of a polarization state gives rise to a flow along
the z-direction in terms of the vorticity manifested by the fields Px and Py , which
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may lead the photon paths to display loops out of the XY -plane. Nodal structures
and other singularities and topological structures may then appear, as was already
shown by Nye [100, 101] within the context of wave dislocations [102] as well as
within the context of the Riemann–Silberstein complex formulation of Maxwell’s
equations [44, 103, 104]. Experimentally, what one would observe on the XZ-plane
is simply the typical fringe-like interference pattern constituted by dark and light
parallel stripes, which results from the accumulation of trajectories arriving to this
plane. Note that (7.74) describes the interference pattern and is the result of trans-
porting the electromagnetic energy density from the slits to some observation screen
in accordance with the guidance or continuity equation [56]

P(r) = U (r)v, (7.80)

which is an alternative way to express (7.47), where v is an effective vector velocity
field that transports the electromagnetic energy density through space in the form
of the Poynting vector (i.e., the electromagnetic energy current density). However,
from (7.79), all the arrivals at a certain height z f will not arise from positions at the
slits at the same height z0 = z f , but there is a flux upwards and downwards which
breaks the longitudinal (along the z-direction) symmetry of the experiment when it
is studied from the viewpoint of photon paths.

As an illustration, a set of photon paths for linear polarization are displayed
in Fig. 7.1, where the wavelength is λ= 500 nm and the inter-slit distance is
d = 20λ= 10 μm (the slit width is equal to their separation, d, as in a Ronchi
grating). The axes are normalized as follows: the x-axis is normalized to the inter-
slit distance, d, while the y-axis is normalized to the so-called Talbot distance [105],
LT = d2/λ= 200 μm (this distance is the one associated with the repetition of the
diffraction pattern produced by a periodic grating; see Volume 2). Photon paths
present the same kind of features which can also be observed with Bohmian trajec-
tories for matter particles diffracted under similar conditions [106, 107]:

1. The transition between the near-field or Fresnel region (see bottom panel in
Fig. 7.1) and the far-field or Fraunhofer region is smooth.

2. They do not cross the symmetry axis of the slit system.

In the Fresnel region (see bottom panel in Fig. 7.1), the paths display the typical
single-diffraction effects until the two diffracted beams meet at about y = 0.4LT

and interference becomes active. Far beyond the Fresnel region, the topology of the
paths becomes stationary, i.e., the angular distribution of the path density (intensity)
does not change regardless of the distance from the two slits (for example, the angular
densities at y = 2 and y = 3 are exactly the same). Within this region, the paths
align along the well-known Fraunhofer diffraction directions,

θn ≈ n
λ

d
, n = 0,±1,±2, . . . . (7.81)
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Fig. 7.1 Photon paths
behind two identical slits.
Top: Paths covering the near
and far field space regions;
the accumulation of paths
along certain directions is a
manifestation of the
diffraction maxima in the
Fraunhofer or far field
region. Bottom: Enlargement
of the paths shown in the top
panel in the Fresnel or near
field region. The numerical
values of the parameters
used here are λ = 500 nm,
d = 20λ = 10μm
andLT = d2/λ = 200μm

Equivalently, if the observation plane is at a distance y = L , the x positions around
which the intensity will be maximal are xn ≈ Lθn .

The theory presented here not only provides the paths for photons, but it also allows
to reproduce the experimental results if a counting on arrival positions is carried out,
as happens with matter particles [107, 108]. This is shown in Fig. 7.2, where the
intensity pattern associated with (7.74) is reproduced when a histogram is built of
the arrivals of paths distributed initially according to a uniform distribution inside the
slits. The agreement between the continuous energy density and the histogram is very
apparent, as it is also when looking at the trajectories in the top panel of Fig. 7.1:
they distribute in accordance with the corresponding intensities. For example, the
central peak consists of twice the number of trajectories that those contributing to
the two surrounding peaks.

In a recent experimental work, Kocsis et al. [53] have reported a reconstruction of
photon paths inferred from the two-slit experiment carrying out weak measurements.
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Fig. 7.2 Comparison
between the intensity
obtained directly from the
optical equations (solid line)
and the counting of photon
arrival positions (solid
circles), such as one would
obtain from a real diffraction
experiment with photons
[30–32]). The numerical
values of the parameters
used here are λ = 500 nm
and, d = 20λ = 10μm
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These paths are in agreement with the behavior displayed by the photon paths of
Fig. 7.1.

7.5.3 Two-Slit Diffraction and Optical Erasure

In Sect. 7.5.2, a typical example of Young two-slit experiment (with the polariza-
tion state of the two diffracted beams being the same) has been discussed. By the
beginning of the XIXth century Arago and Fresnel generalized Young’s interference
experiment by considering different cases of polarization, which led to a series of
laws on polarization and interference, namely the aforementioned Arago–Fresnel
laws [98–100]. According to these laws, if two diffracted beams with different
polarization states interfere, the visibility of the interference pattern will decrease.
Actually, if the polarization states are orthogonal the pattern will disappear totally—
for example, no interference pattern will be observed if the two interfering beams are
linearly polarized in orthogonal directions [108–110] or both are elliptically polar-
ized, but one is left-handed and the other right-handed [110, 111]. In the case of
low intensity beams (i.e., within the domain of quantum optics), polarized light is
used in experiments such as the so-called interference quantum eraser [112, 113],
which are very important nowadays because of their implications at a fundamental
level [114] and also from the viewpoint of quantum information [115]. According
to the conventional or standard viewpoint, this kind of experiments are commonly
interpreted following “which-way”-like arguments. However, as seen above, if the
same experiment is revisited with the photon path formalism, one can observe that
the outcomes are a consequence on how the electromagnetic energy flow is influ-
enced when modifying the polarization properties of each slit, thus giving rise to a
partial or a total suppression of the interference pattern.
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In order to study the effects described by the Arago–Fresnel laws, consider now the
explicit form for the superposition (7.72). Thus, when this superposition is substituted
into (7.59), then

E(r) = iαc1

ωε0

∂ψ1

∂y
x̂ − iαc1

ωε0

∂ψ1

∂x
ŷ+ kβeiφc1

ωε0
ψ1ẑ

+ iαc2

ωε0

∂ψ2

∂y
x̂ − iαc2

ωε0

∂ψ2

∂x
ŷ+ kβeiφc2

ωε0
ψ2ẑ, (7.82a)

H(r) =− iβeiφc1

k

∂ψ1

∂y
x̂ + iβeiφc1

k

∂ψ1

∂x
ŷ+ αc1ψ1ẑ

− iβeiφc2

k

∂ψ2

∂y
x̂ + iβeiφc2

k

∂ψ2

∂x
ŷ+ αc2ψ2ẑ, (7.82b)

where the vector components have been separated purposely in terms of each
diffracted beams. Now, let us suppose that, after passing through slit 1, the electro-
magnetic field becomes E-polarized, which is the same as selecting theβ components
of the electromagnetic field in slit 1 (i.e., only these components pass through this
slit). Similarly, after passing through slit 2, the electromagnetic field is H -polarized,
thus selecting the α components. With this, (7.82) become

E(r) = iαc2

ωε0

∂ψ2

∂y
x̂ − iαc2

ωε0

∂ψ2

∂x
ŷ+ kβeiφc1

ωε0
ψ1ẑ, (7.83a)

H(r) = − iβeiφc1

k

∂ψ1

∂y
x̂ + iβeiφc1

k

∂ψ1

∂x
ŷ+ αc2ψ2ẑ. (7.83b)

Before computing the photon paths, it is interesting to note the following feature
about the interference pattern. Let us express (7.74) in terms of the two diffracted
beams, i.e.,

U = (α2 + β2)c2
1

4ω2ε0

(
∂ψ1

∂x

∂ψ∗1
∂x
+ ∂ψ1

∂y

∂ψ∗1
∂y
+ k2ψ1ψ

∗
1

)

+ (α
2 + β2)c2

2

4ω2ε0

(
∂ψ2

∂x

∂ψ∗2
∂x
+ ∂ψ2

∂y

∂ψ∗2
∂y
+ k2ψ2ψ

∗
2

)

+ (α
2 + β2)c1c2

4ω2ε0

(
∂ψ1

∂x

∂ψ∗2
∂x
+ ∂ψ1

∂y

∂ψ∗2
∂y
+ k2ψ1ψ

∗
2

)

+ (α
2 + β2)c1c2

4ω2ε0

(
∂ψ2

∂x

∂ψ∗1
∂x
+ ∂ψ2

∂y

∂ψ∗1
∂y
+ k2ψ2ψ

∗
1

)
.

(7.84)

In shorthand notation, (7.84) can also be recast as
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U = U1 +U2 +U12, (7.85)

where U1 and U2 are the electromagnetic energy densities associated with the partial
waves ψ1 or ψ2, i.e., the first and second terms in (7.84), respectively. On the other
hand, U12, the last two terms in (7.84), is the electromagnetic energy density arising
form the interference of these waves. Thus, assuming orthogonality between the
interfering beams (E-polarized components passing only through slit 1, while the
H -polarized ones pass through slit 2), the electromagnetic energy density becomes

U = β2c2
1

4ω2ε0

(
∂ψ1

∂x

∂ψ∗1
∂x
+ ∂ψ1

∂y

∂ψ∗1
∂y
+ k2ψ1ψ

∗
1

)

+ α2c2
2

4ω2ε0

(
∂ψ2

∂x

∂ψ∗2
∂x
+ ∂ψ2

∂y

∂ψ∗2
∂y
+ k2ψ2ψ

∗
2

)

= U1 +U2. (7.86)

That is, the electromagnetic energy density detected behind the two slits satisfies
the law of addition of intensities which rules incoherent light, in accordance with
Arago–Fresnel laws. On the contrary, if the diffracted beams have the same polar-
ization state, they will interfere constructively and full interference will be observed.
For beams with different polarizations (but without reaching the orthogonal case),
interference can also be observed, but with a lower visibility.

In order to study now the photon paths, (7.73) is expressed explicitly as functions
of ψ1 and ψ2, which yields

Px = i(α2 + β2)

4ωε0

[
c2

1

(
ψ1
∂ψ∗1
∂x
− ψ∗1

∂ψ1

∂x

)
+ c2

2

(
ψ2
∂ψ∗2
∂x
− ψ∗2

∂ψ2

∂x

)]

+ i(α2 + β2)c1c2

4ωε0

[(
ψ1
∂ψ∗2
∂x
− ψ∗2

∂ψ1

∂x

)
+
(
ψ2
∂ψ∗1
∂x
− ψ∗1

∂ψ2

∂x

)]
, (7.87a)

Py = i(α2 + β2)

4ωε0

[
c2

1

(
ψ1
∂ψ∗1
∂y
− ψ∗1

∂ψ1

∂y

)
+ c2

2

(
ψ2
∂ψ∗2
∂y
− ψ∗2

∂ψ2

∂y

)]

+ i(α2 + β2)c1c2

4ωε0

[(
ψ1
∂ψ∗2
∂y
− ψ∗2

∂ψ1

∂y

)
+
(
ψ2
∂ψ∗1
∂y
− ψ∗1

∂ψ2

∂y

)]
, (7.87b)

Pz = iαβ sin φ

2kωε0

[
c2

1

(
∂ψ1

∂x

∂ψ∗1
∂y
− ∂ψ1

∂y

∂ψ∗1
∂x

)
+ c2

2

(
∂ψ2

∂x

∂ψ∗2
∂y
− ∂ψ2

∂y

∂ψ∗2
∂x

)]

+ iαβ sin φc1c2

2kωε0

[(
∂ψ1

∂x

∂ψ∗2
∂y
− ∂ψ1

∂y

∂ψ∗2
∂x

)
+
(
∂ψ2

∂x

∂ψ∗1
∂y
− ∂ψ2

∂y

∂ψ∗1
∂x

)]
,

(7.87c)
or, in shorthand notation,
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Px = Px,1 + Px,2 + Px,12, (7.88a)

Py = Py,1 + Py,2 + Py,12, (7.88b)

Pz = Pz,1 + Pz,2 + Pz,12. (7.88c)

As it is apparent from these expressions, the electromagnetic energy flux also shows
the same structure as the electromagnetic energy density—there is a separate contri-
bution from each slit as well as an interference term. As in Sect. 7.5.2, the photon
paths are computed after substitution of (7.87) and (7.86) into (7.47).

By varying the state of the polarizers one may obtain a similar effect to
decoherence, i.e., the interference features will start to disappear, this giving rise
to a kind of erasure of the information that makes the trajectories to display their
characteristic wiggly behavior [116, 117]. Hence, a particular case of interest is that
of interference beams with orthogonal polarization after crossing the slits. In this
case, (7.87) reduce to

Px = iβ2c2
1

4ωε0

(
ψ1
∂ψ∗1
∂x
− ψ∗1

∂ψ1

∂x

)
+ iα2c2

2

4ωε0

(
ψ2
∂ψ∗2
∂x
− ψ∗2

∂ψ2

∂x

)
, (7.89a)

Py = iβ2c2
1

4ωε0

(
ψ1
∂ψ∗1
∂y
− ψ∗1

∂ψ1

∂y

)
+ iα2c2

2

4ωε0

(
ψ2
∂ψ∗2
∂y
− ψ∗2

∂ψ2

∂y

)
, (7.89b)

Pz = 0, (7.89c)

which give rise to the photon path equation

dy

dx
=
β2c2

1

(
ψ1
∂ψ∗1
∂y
− ψ∗1

∂ψ1

∂y

)
+ α2c2

2

(
ψ2
∂ψ∗2
∂y
− ψ∗2

∂ψ2

∂y

)

β2c2
1

(
ψ1
∂ψ∗1
∂x
− ψ∗1

∂ψ1

∂x

)
+ α2c2

2

(
ψ2
∂ψ∗2
∂x
− ψ∗2

∂ψ2

∂x

) . (7.90)

When this equation is compared to (7.76), the stationarity along the z-direction (i.e.,
no motion along this direction) is not caused by having linearly polarized diffracted
beams, but because their polarization states are orthogonal, regardless whether they
are linear or elliptical. However, unlike the case of linear polarization, here there is not
a final interference pattern. This is because, as mentioned above, the orthogonality of
the polarization states gives rise to two independent (non interfering) electromagnetic
energy fluxes across the slits, as indicated by (7.86). Nevertheless, the fact of having
simple addition of electromagnetic energy densities does not mean that the photon
paths will not be influenced by the presence of both slits (electromagnetic energy
fluxes). On the contrary, both will strongly influence the topology of the photon paths,
as can be inferred from (7.90). In particular, it can be shown [118] that, for equations
like (7.90), the trajectories exiting through one slit never cross the trajectories coming
from the other one, and, if both slits are identical, there is perfect symmetry between
both groups of trajectories with respect to the axis y = 0 (assuming the center of
each slit is at the same distance from y = 0).
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7.6 Photon Paths and Optical Schrödinger-like Equations

As seen in Sect. 4.6.1, when classical electromagnetism is reformulated in terms
of the Riemann–Silberstein [119–121] (see Sect. 4.6.1), the electromagnetic energy
density (7.46) can be expressed as

U = � ·�∗. (7.91)

Moreover, under the absence of free electric charges and charge current densities,
the flow of this energy density across the space, described by the Poynting vector
(7.45), reads as

P = icF× F∗, (7.92)

where the relation

∇(A× B) = B · ∇ × A− A · ∇ × B (7.93)

for any two vectors, A and B, has been used. Taking into account these two results,
the photon paths are obtained now in terms of � by substituting (7.91) and (7.92)
into (7.47), which yields

dr
ds
= i

(
�×�∗
� ·�∗

)
. (7.94)

Since conditions of stationarity were assumed above (i.e., the electromagnetic field
covers the whole space and is only affected by the boundary conditions of the problem
considered), (7.94) transports the time-averaged electromagnetic energy density, U ,
as described by the (also time-averaged) Poynting vector, P. That is, in agreement
with (7.80).
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Appendix A
Calculus of Variations

The calculus of variations appears in several chapters of this volume as a means to
formally derive the fundamental equations of motion in classical mechanics as well
as in quantum mechanics. Here, the essential elements involved in the calculus of
variations are briefly summarized.1

Consider a functional F depending on a function y of a single variable x (i.e., y =
y(x)) and its first derivative y′ = dy/dx.Moreover, this functional is defined in terms
of the line or path integral

F[I] =
∫ xb

xa

I(y, y′, x)dx. (A.1)

Accordingly, the value of F will depend on the path chosen to go from xa to xb.

The central problem of the calculus of variations [1–3] consists of determining the
path y(x) that makes F an extremum (a maximum, a minimum or a saddle point).
In other words, this is equivalent to determining the conditions for which (A.1)
acquires a stationary value or, equivalently, is invariant under first-order variations
(or perturbations) of the path y(x), i.e.,

δF = δ
∫ xb

xa

I dx =
∫ xb

xa

δI dx = 0. (A.2)

Let us thus define the quantities δy = Y(x) − y(x) and δI = I(Y ,Y ′, x) −
I(y, y′, x), where Y(x) denotes the perturbed path. Variations are taken with respect
to the same x value, so δx = 0. It is straightforward to show that δy′ = d(δy)/dx and
therefore

1 The brief description of the essential elements involved in the calculus of variations presented
here can be complemented with more detailed treatments, which can be found in well-known
textbooks on mathematical physics, e.g., [1–3].
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δI =
(
∂I

∂y
+ ∂I

∂y′
d

dx

)
δy. (A.3)

Substituting this expression into (A.2) and then integrating by parts yields

∫ xb

xa

(
∂I

∂y
− d

dx

∂I

∂y′

)
δy dx = 0, (A.4)

since, at the boundaries, δy(xa) = δy(xb) = 0. Because δy is an arbitrary, infinites-
imal increment, it can be chosen so that the integrand in (A.4) vanishes. This leads
to the well-known Euler–Lagrange equation,

∂I

∂y
− d

dx

∂I

∂y′
= 0. (A.5)

The function y satisfying this equation, if it exists, is said to be an extremal curve or
extremal.

Equation (A.5) can also be recast as

∂I

∂x
− d

dx

(
I − y′ ∂I

∂y′

)
= 0, (A.6)

which arises after taking into account the dependence of I on x, y and y′ as well as
the fact that

d

dx
= ∂

∂x
+ y′ ∂

∂y
+ y′′ ∂

∂y′
. (A.7)

Equation (A.6) is useful whenever I does not depend explicitly on x, for it becomes

I − y′ ∂I

∂y′
= constant, (A.8)

which is also an extremal.
Consider now that I depends on several functions y1, y2, . . . , yN of x and their

respective derivatives, y′1, y′2, . . . , y′N .Then, proceeding in a similar way, a functional

F[I] =
∫ xb

xa

I(y1, y2, . . . , yN , y′1, y′2, . . . , y′N , x)dx (A.9)

can be defined, which becomes an extremum or stationary when the set of Euler–
Lagrange equations

∂I

∂yi
− d

dx

∂I

∂y′i
= 0, i = 1, 2, . . . ,N, (A.10)
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is satisfied. However, it could happen that the search for an extremum condition is
subject to a constraint, as in the so-called isoperimetric problems (e.g., determining
the closed plane curve of maximum area and fixed perimeter). In such cases, given
a set J1, J2, . . . , JM of constraining conditions that depend on x and the yi(i =
1, 2, . . . ,N), the set of N equations (A.10) is replaced by the set of N +M equations

⎧⎨
⎩
∂I

∂yi
− d

dx

∂I

∂y′i
+

M∑
j=1
λj(x)

∂Jj

∂yi
= 0

Jj(x, y1, y2, . . . , yN ) = 0
. (A.11)

The λj functions are the so-called Lagrange undetermined multipliers, M unknown
functions of x (or constants) which have to be determined in order to obtain a full
(complete) solution to the problem.

If the constraints in (A.11) are specified by a set of M functional integral
constraints,

Fj =
∫ xb

xa

Jj(y1, y2, . . . , yN , y′1, y′2, . . . , y′N , x)dx = cj, (A.12)

where all cj are constant and the Fj are extrema for the yi, a function

K = I +
M∑

j=1

λjJj (A.13)

can be defined. Proceeding as before, one finds that these functions have to satisfy
the Euler–Lagrange equation

∂K

∂yi
− d

dx

∂K

∂y′i
= 0, i = 1, 2, . . . ,N, (A.14)

as well as the integral constraints (A.12).
In the particular case of mechanical systems, when the variational principle is

applied, power series expansions up to the third order in the displacement are often
considered. In these series expansions, the zeroth-order term gives us the action
integral along the reference trajectory; the second-order is called the first variation,
which vanishes for any path due to the stationarity condition; the third-order or
second variation provides us with information about the nature of the stationary
value (maximum, minimum or saddle point) by analyzing the eigenvalues of the
matrix associated with the corresponding quadratic form in the displacements.

The formalism described above is rather general. As seen in Chap. 3, for example,
it is closely related to the formal derivation of Schrödinger’s wave equation. In this
case, instead of several functions yi of a single variable x, one considers a function
ψ of several variables xi. These functions are usually called field functions or fields.
Furthermore, a subtle conceptual difference can be found in the application of the

http://dx.doi.org/10.1007/978-3-642-18092-7_3
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calculus of variations in classical and in quantum mechanics. In classical mechanics,
it is tightly connected to the concept of energy (Hamiltonian); different solutions
are then obtained from its application, namely the classical trajectories. In quantum
mechanics, though, this idea is extended to functionals of a single dependent variable
(the wave function field) and several independent variables, thus generalizing the
classical case. Thus, rather than keeping constant the energy along a given path,
energy conservation appears in the calculation of the average or expectation value
of such an observable.
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Appendix B
Stochastic Processes

The theory of stochastic processes is of fundamental interest to understand the theory
of open classical and quantum systems, as seen in Chaps. 2, 5 and 6. In this regard, in
order to make this volume self-contained as far as possible and to better understand
the dynamics of open systems, some elementary concepts on probability theory and
stochastic processes are introduced here.1

B.1 Random or Stochastic Variables

A probability or measure space is defined by three mathematical objects (Ω,A,P).
In this triad,Ω represents the set of elementary outcomes or sample space, with such
elements usually denoted by ω, with ω ∈ Ω;A is a collection or field of events;
and P is a probability measure.

The field of events A is also called a σ -algebra of events. It consists of a family
or set of subsets of Ω , such that:

1. Ω ∈ A and ∅ ∈ A.
2. If A ∈ A, then Ā = Ω − A ∈ A.
3. If A,B ∈ A, then A ∪ B ∈ A,A ∩ B ∈ A and A− B ∈ A.
In brief, the σ -algebra forms a closed system under the union (∪), intersection (∩)
and complementary set operations.

A probability measure is simply a map P : A→ R, which assigns a real number
to each event A of the σ -algebra. The probability of an event A, denoted by P(A),
satisfies the Kolmogorov axioms of probability, from which a series of consequences
arise. For example, the probability P(A) has a numeric bound for all A, namely
0 ≤ P(A) ≤ 1. Thus, P(Ω) = 1 characterizes a certain event and P(∅) = 0 an
impossible event; P(Ā) = 1−P(A) represents the probability of the complementary
event of A. If Ai is a countable collection of non-overlapping (or mutually exclusive)

1 For further reading on these issues, the interested reader may consult more specialized works,
e.g., [1–10].
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sets, i.e., Ai ∩Aj = ∅ for i �= j, then P(A1 ∪A2 ∪ · · · ) =∑
i P(Ai). On the contrary,

given A and B, if A ∩ B �= ∅, the non-vanishing probability P(A ∩ B) represents the
joint probability that any element of the intersection occurs; two events are called
independent when P(A∩B) = P(A)P(B). Similarly, the conditional probability that
an event A occurs, given another event B also occurs (i.e., P(B) �= 0), is defined as
P(A|B) = P(A ∩ B)/P(B).

A random or stochastic variable X is a function from the sample space Ω into
the set of real (or complex) numbers with the property A = {ω/X(ω) ≤ x} ∈
A, with x ∈ R being a realization of X. This random variable or function is said
to be measurable with respect to the σ -algebra of A, this definition often being
expressed in terms of the inverse image, as A = X−1((−∞, x]) ∈ A, with x ∈ R.

Accordingly, the probability of an observable event of A is defined as PX(A) =
P(X−1(A)) = P({ω/X(ω) ∈ A}). In order to formalize this statement, the σ -algebra
of Borel sets of R, denoted by B, is introduced, which is defined as the smallest
σ -algebra containing all subsets of the form (−∞, x), with x ∈ R—in particular, it
contains all open and closed intervals of the real axis. A function is then measurable
when, for any Borel set B ∈ B, the pre-image A = X−1(B) belongs to theσ -algebra A
of events. The distribution function or probability distribution of the random variable
is defined as FX(x) = P({ω/X(ω) ≤ x}) = P(X ≤ x), with x ∈ R, which satisfies

1. FX(−∞) = 0.
2. FX(+∞) = 1.
3. FX(x) is an increasing monotonically right continuous function.

In many applications, continuous random variables are often found, with their
probability density being defined as pX(x) = dFX(x)/dx or, equivalently, as

FX(x) =
∫ x

−∞
pX(x

′)dx′, (B.1)

so that

dFX(x) = FX(x + dx)− FX(x) = pX(x)dx

= P(x ≤ X < x + dx) = P(dω). (B.2)

For random vectors or an arbitrary collection of d random variables, similar functions
and densities can be defined in R

d—if d = 2, they are called bivariate distributions,
while for any general d, they are multivariate ones. This information provides a
complete characterization of the random variable X. Thus, if the density of a random
variable exists, the probability that x will be contained in the interval (x, x+dx) goes
to zero with dx. Therefore, the probability that X has exactly an x value is zero. Sets
containing one single point as well as any set only containing a countable number
of points have zero probability. In probability theory, all equalities are at best only
almost certainly true, almost surely or with probability one. Very often X drops in
FX and pX .

Functions of random variables, Y = g(X), can also be defined. Thus, if FX is the
probability distribution of X, then PY (B) = PX(g

−1(B)) and
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pY (y) =
∫
δ(y − g(x))pX(x)dx, (B.3)

where δ denotes the Dirac δ-function; if Y = X1 + X2, then g(x1, x2) = x1 + x2;
and, if X1 and X2 are independent, then

pY (y) =
∫

pX1(x1)pX2(y − x1)dx1, (B.4)

which is the convolution of the densities associated with X1 and X2.

Formally, the average, expectation or mean value of a discrete random variable X
is defined as

E{X} =
∑

i

xiP(Ai), (B.5)

which is also often denoted as X̄ or 〈X〉. On the other hand, if X is a continuous
random variable,

E{X} =
∫
Ω

X(ω)dP(ω) =
∫
Ω

X(ω)P(dω), (B.6)

which can also be expressed in a more familiar form as

E{X} =
∫

R

xdFX(x) =
∫

R

xpX(x)dx. (B.7)

The mean value (B.7) is also known as the first moment of the distribution function;
higher nth-order moments E{Xn} can be defined in a similar fashion provided pX(x)
exists. In this regard, it is worth mentioning that the knowledge of all moments is
not a sufficient condition to uniquely determine pX(x). From (B.7), the expectation
value of functions of a random variable can also be defined. For example, if the mean
value is known, the central moments of a random variable are defined as

E{(δX)r} = E{(X − E{X})r} =
∫

R

(x − E{X})rpX(x)dx. (B.8)

The second central moment, σ 2, defined as

Var(X) = ΔX = E{(X − E{X})2} = E(X2)− E(X)2, (B.9)

also denoted asΔX, is known as the variance, mean-square deviation or fluctuation.
This moment is a measure of the width of the probability density or, in other words,
of the fluctuations of X with respect to its mean value, δX. The number and location
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of the extrema of the probability distribution are important, because their maxima
are the so-called most probable states (which is a local property).

When there are two random variables, it is very often interesting to know if they
are correlated or not. A measure of their degree of correlation is given by the so-called
covariance, defined as

σXY = E{(X − E{X})(Y − E{Y})}
=

∫
R

(x − E{X})(y− E{Y})pXY (x, y)dxdy,
(B.10)

where pXY (x, y) is the joint probability density. If X and Y are independent (or uncor-
related), then σXY = 0 (the opposite is not true in general). For several random
variables, a covariance matrix can be defined, which is symmetric and positive semi-
definite. The off-diagonal elements are called covariances and are a measure of the
linear dependence of two random variables. Hence, if the variables are pairwise inde-
pendent, the covariance matrix will be diagonal. Correlation coefficients between two
random variables are then defined by their covariance divided by the square root of
the product of their respective variances, i.e., C(X,Y) = σXY/

√
ΔXΔY . It is clear

that 0 ≤ |C(X,Y)| ≤ 1.
The characteristic function of a random variable X is defined as the Fourier trans-

form of its probability density,

G(ξ) = E{eiξX} =
∫

pX(x)e
iξxdx, (B.11)

for a real number ξ—note the close similarity between this form and the trans-
formations that allow to pass in quantum mechanics from the configuration to the
momentum space and vice versa. This function is also called the generating function
of all moments of the random variable, since the nth derivative of G(ξ) evaluated at
ξ = 0 gives the nth moment, E{Xn}—of course, this relies on the implicit assumption
that pX(x) is sufficiently regular and therefore the exponential admits a Taylor series
expansion. From the Fourier inversion formula, pX(x) can be determined with prob-
ability one. As it can be shown, a sequence of probability densities converges to a
limiting probability density if the corresponding characteristic functions converge to
the characteristic function associated with the limiting probability density. A straight-
forward generalization to more variables can easily be carried out. In such a case,
if all of them are independent, the corresponding characteristic function will be the
product of the individual characteristic functions. Similarly, the logarithm of the
characteristic function generates all the cumulants of X. The first cumulant is the
mean value, while the second cumulant is the covariance of two random variables.
Finally, X can also be given by the integral of a stochastic process.

When two random variables are not statistically independent, there is some infor-
mation about one of them with respect to the other. In such a case, one can define
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the so-called marginal distributions,

pX(x) =
∫

R

pXY (x, y)dy, (B.12a)

pY (y) =
∫

R

pXY (x, y)dx. (B.12b)

The conditional expectation value of the random variable X is defined as

E{X|B} =
∫
Ω

X(ω)P(dω|B), (B.13)

although it can also be written as

E{X|B}P(B) =
∫

B
X(ω)P(dω). (B.14)

Many times it is necessary to establish a set of conditions with respect to a collection
of events or to the history of events. This is done, for example, to make the best
possible prediction of the actual random variable X knowing the available or previous
information. The sub-σ -algebra C generated by {Ai}, with C ⊂ A, is precisely the
available information. The best possible prediction or estimate of X is another random
variable Y which has to be C-measurable and fulfills the condition

∫
Ai

Y(ω)P(dω) =
∫

Ai

X(ω)P(dω), (B.15)

with Ai ⊂ C. According to the Radon–Nikodym theorem [11, 12], there is a random
variable Y with the above properties, such that it is almost surely unique and can be
expressed as

Y = E{X|C} =
∫
Ω

X(ω)P(dω|C). (B.16)

The most important properties of conditional expectations are:

• E{E{X|C}} = E{X}.
• If X ≥ 0, then E{X|C} ≥ 0.
• If X is measurable with respect to C, then E{X|C} = X.
• If E{X} <∞ and E{Y} <∞, then E{aX + bY |C} = aE{X|C} + bE{Y |C}, with

a and b being constant.
• If X and C are independent, then E{X|C} = E{X}.
• If C1 and C2 are sub-σ -algebras of A, such that C1⊂ C2⊂A, then E{E{X|C2}|C1}
= E{E{X|C1}|C2} = E{X|C1}.

A particular class of conditional expectation values is obtained when the condi-
tioning is considered with respect to another random variable. In this case, E{X|C} =
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E{X|Z},when the σ -algebra C is generated by the random variable Z. Since E {X|Z}
is a random variable, it can be shown by means of a theorem that E{X|Z} = h(Z), i.e.,
the corresponding random variable can be written as a measurable function h of Z.
This function is real-valued and almost surely uniquely defined. One can therefore
write E{X|Z = z}= h(z) and, if the marginal probability density

pZ(z) =
∫

R

pXZ(x, z)dx (B.17)

is positive, then

p(x|z) = pXZ(x, z)

pZ(z)
. (B.18)

From these expressions, one finds

E{x|z} =
∫

R

xp(x|z)dx (B.19a)

E{E{x|z}} = E{x} =
∫

R

xpXZ (x, z)dxdz. (B.19b)

One of the most widely used probability distributions is the Gaussian or normal
distribution. According to the central limit theorem, any random variable X given by
the sum of N statistically independent and identically distributed random variables
becomes Gaussian or normally distributed. That is, in the limit N →∞ and provided
the first and second moments do not diverge (in pX(x) very often X drops in most of
textbooks),

p(x) = 1√
2πσ 2

e−x2/2σ 2
. (B.20)

Within this context, the concept of limiting distribution readily appears, not related to
the regular behavior of the moments of the distribution itself, but to stability. It can be
shown that a probability distribution can only be a limiting distribution if it is a stable
or Lévy distribution. In this class of distributions, the logarithm of their characteristic
functions must satisfy a certain mathematical expression [7] and display long-range,
inverse power-law tails which may lead to a divergence of even the lowest order
moments. For example, the second moment of the Cauchy or Lorentzian distribution
is infinite, going as |x−(1+α)| when 0<α< 2 and |x|→∞.

Another important distribution is the binomial distribution, which is a discrete
probability distribution accounting for the number of successful events with proba-
bility p in a sequence of n independent experiments with two possible outcomes (e.g.,
yes/no, 0/1). This type of distribution describes, for example, a random walker on a
line, stepping forward and backwards randomly. The binomial distribution converges
to a Gaussian one in the limit of a large number of jumps, as can be easily shown using
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Stirling’s formula. An “intermediate” case between both distributions is the Poisson
distribution, which is continuous and appears in the joint limit p→ 0 and n→∞,
but keeping constant the quantity λ = pN .

The concept of limit of a sequence of random variables arises naturally in many
different physical situations, though there is not a unique way to define it. Some of
these definitions are:

1. The almost certainly or surely limit,

X = lim
n→∞Xn, (B.21)

i.e., Xn converges almost surely to X, is the simplest definition. In brief, this limit
is more explicitly expressed as

X = as– lim
n→∞Xn. (B.22)

2. The mean square limit or limit in the mean,

X = ms– lim
n→∞Xn, (B.23)

which implies that

ms– lim
n→∞E{(Xn − X)2} = 0. (B.24)

3. The stochastic limit or limit in probability,

X = st−lim
n→∞Xn. (B.25)

According to this definition

lim
n→∞P(|Xn − X| < ε) = 0 (B.26)

for positive ε.
4. The limit in distribution,

E{f (X)} = lim
n→∞E{f (Xn)}, (B.27)

for any continuous bound function f (x).

B.2 Stochastic Processes

A family of random variables indexed by the parameter time is known as a
random or stochastic process, denoted by a collection of real (or complex) numbers



276 Appendix B: Stochastic Processes

{Xt(ω)} or {X(ω, t)}. If time is fixed and ω varies over the sample space, the random
variable is measurable in the sense that the pre-images of any Borel set in R must
belong to the σ -algebra of events of the probability space considered. Conversely, if
ω is fixed and t varies on a given interval T, the function is real-valued on the time
axis. This is called a realization, stochastic trajectory or sample path of the stochastic
process Xt . A stochastic process can then be regarded as a map X : Ω × T → R.

Multivariate stochastic processes Xt are defined as vector stochastic processes with
a given number of components, each one being a real-valued stochastic process.

A stochastic process is characterized by a hierarchy of joint distribution functions
F(x, t) = P(Xt ≤ x),F(x1, t1; x2, t2) = P(Xt1 ≤ x1;Xt2 ≤ x2), etc., which satisfies
two properties:

1. Symmetry: two distribution functions differing by a permutation of n time values
are equal.

2. Compatibility: the lower members of the hierarchy can be obtained from the higher
ones.

In terms of the probability density, if

F(x1, t1; · · · , xn, tn) =
∫ x1

−∞
· · ·

∫ xn

−∞
dx′1 · · · dx′np(x′1, t1; · · · ; x′n, tn), (B.28)

the compatibility property then reads as

p(x1, t1; · · · ; xm, tm) =
∫

R

· · ·
∫

R

dx′m+1 · · · dx′np(x1, t1; · · · ; xn, tn), (B.29)

for m < n. According to Kolmogorov’s fundamental theorem, for every hierarchy
of joint distribution functions satisfying both properties, there exist a probability
space (Ω,A,P) and a stochastic process Xt defined on it, which possess the given
distribution functions.

Two stochastic processes are said to be equivalent if they have an identical hier-
archy of joint distribution functions—which does not mean that the realization of
the two processes are identical. A stochastic process is said to have almost surely
continuous sample paths if

P({ω/Xt(ω) is a continuous function on time}) = 1. (B.30)

Taking into account the several definitions given above for the limit of a random
variable sequence, a series of definitions of continuity for a stochastic process can
also be established:

1. Xt is continuous in probability if for every t and positive ε

lim
s→t

P(|Xs − Xt | > ε) = 0. (B.31)

2. Xt is continuous in mean square if for every t

lim
s→t

E{(Xs − Xt)
2} = 0. (B.32)
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3. Xt is continuous almost surely if for every t

P({ω/ lim
s→t

Xs(ω) = Xt(ω)}) = 1. (B.33)

In any of the three definitions, the continuity of the sample path is guaranteed only
if the probability that a discontinuity in such paths occurs at a given time is zero.

A stochastic process is called stationary if all its finite-dimensional probability
densities are invariant with respect to time shifts. Thus, the expectation value of a
stationary stochastic process will be constant with time and the two-event (or two-
dimensional) probability density will only depend on the time difference,

p(x1, t1; x2, t2) = p(x1, x2; t2 − t1). (B.34)

Taking this into account, a (two-event) correlation function can be defined as

C(|t2 − t1|) = E{(Xt1 − E{Xt1})(Xt2 − E{Xt2})}, (B.35)

from which the memory or correlation time of a stationary stochastic process Xt is
given by

τcorr = 1

C(0)

∫ ∞
0

C(τ )dτ, (B.36)

with C(τ ) = E{(Xt−E{Xt})(Xt+τ −E{Xt+τ })}. This timescale can be considered as
a measure for the rapidity of the stochastic process fluctuations. For example, short-
memory or short-correlation times imply faster decreasing correlation functions.
When dealing with realizations or stochastic trajectories, time averages can also be
computed. For random variables, their mean value is defined as

〈x〉 = lim
T→∞

1

2T

∫ T

−T
x(t)dt (B.37)

and the corresponding autocorrelation function as

C(τ ) = 〈x(t)x(t + τ)〉 = lim
T→∞

1

2T

∫ T

−T
x(t)x(t + τ)dt. (B.38)

If time averages and ensemble averages are equal, the stochastic process is said to
be ergodic.

According to the spectral decomposition theorem, Xt can be written as a Fourier
integral with random coefficients

Xt =
∫

R

eiνtdZν, (B.39)

where Zν is a stochastic process in the complex space. It has uncorrelated increments
of zero mean value. As it can be shown,
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C(τ ) =
∫

R

eiντS(ν)dν, (B.40)

where S(ν) is known as the power or frequency spectrum, which satisfies the property
E{dZνdZ∗ν } =

∫
S(ν)dν. This quantity is a measure of the mean square power with

which an oscillation of frequency ν contributes to the process Xt . Accordingly, an
effective band width can be defined,

νeff = 1

S(0)

∫ ∞
0

S(ν)dν, (B.41)

which becomes very broad for small correlation times.
In stochastic dynamics, there are several stochastic processes which play a very

important role [7, 13]: Wiener processes, Ornstein–Uhlenbeck processes and Poisson
processes. They will be briefly revised below.

B.2.1 Wiener Processes and Brownian Motion

A Wiener (W) process [14] is a mathematical model that describes the Brownian
motion undergone by small particles. This type of process presents the following
characteristics:

1. It undergoes very rapid motions as, for example, it happens in low viscosity fluids
and at high temperatures.

2. Ceaseless motion with very irregular trajectories (the velocity of Brownian parti-
cles is undefined).

If Wt is used to denote the position of the Brownian particle from some arbitrary point
at t0 = 0, then W0 = 0. W-processes are Gaussian, i.e., all the finite dimensional
probability distributions are Gaussian and have stationary independent increments.
This means that the increments Wt1,Wt2 −Wt1 , . . . ,Wtn −Wtn−1 are independent for
t1 < . . . < tn. The corresponding hierarchy of probability densities is given by

p(x, t) = 1√
2π t

e−x2/2t (B.42)

and

p(x1, t1; . . . ; xn, tn) = p(x1, t1)p(x2−x1, t2−t1) · · · p(xn−xn−1, tn−tn−1). (B.43)

Although the probability density of a given increment is Gaussian, this stochastic
process is not stationary itself. Furthermore, expectation values satisfy the following
properties:

1. E{Wt} = 0.
2. E{WtWs} = min (t, s).
3. E{W2

t } = t.
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Wiener sample paths are continuous functions with probability one, but nowhere
differentiable. In other words, (Wt+h − Wt)/h is Gaussian distributed, but when h
goes to zero the Gaussian distribution diverges. Moreover, the limit in the mean
square,

lim
n→∞

n∑
k=1

(Wtk −Wtk−1)
2 = t − s, (B.44)

is almost surely, where s = t(n)0 < . . . < t(n)n = t is a sequence of partitions of the
interval [s, t], such that the size of each partition goes to zero for n→∞.

B.2.2 Ornstein–Uhlenbeck Processes and Brownian Motion

In Ornstein–Uhlenbeck (OU) processes [15], the role of the stochastic process is
assigned to the velocity of the Brownian particle. Thus, the particle position (which
is no longer a W-process) can then be obtained by integration. OU-processes are
stationary, with E{Xt} = 0, and their correlation functions are given by decreasing
exponentials,

E{XtXs} = σ 2

2 γ
e− γ |t−s|, (B.45)

where γ is the damping rate. Like W-processes, OU-processes are also Gaussian
and do not have independent but correlated increments. The hierarchy of probability
densities is given by

p(x) =
√

γ

πσ 2 e− γ x2/σ 2
(B.46)

and

p(x1, t1; . . . ; xn, tn) = p(x1)p(x2, x1; t2 − t1) · · · p(xn, xn−1; tn − tn−1), (B.47)

with

p(x, y;Δt) =
√

γ

πσ 2(1− e−2 γΔt)
e− γ(y−xe− γΔt)2/σ 2(1−e−2 γΔt). (B.48)

As mentioned above, the integral of an OU-process,

Yt =
∫ t

0
Xsds, (B.49)

with Y0 = 0, renders the Brownian particle position. This integration has to be
understood as realization-wise, i.e., as almost surely. Moreover, since Xt is a contin-
uous function of x with probability one, the integral is well-defined—the integral
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over a Gaussian process is another Gaussian process. Thus, E{Yt} = 0, while the
covariance E{YtYs} is different from zero. The W-process is recovered in the limit
σ →∞ and γ→∞, with σ 2/ γ2 constant, usually equal to 1.

B.2.3 Poisson Processes

In order to describe discrete steps, Poisson (P) processes [16] in terms of discrete
variables with independent increments are considered, rather than continuous W-
processes. Considering all sample paths start from zero at time zero (X0 = 0), the
hierarchy of probability densities are Poisson distributions,

p(j, t) = (λt)j

j! e−λt, (B.50)

with j = 0, 1, . . . and zero values for j < 0, and

p(j1, t1; . . . ; jn, tn) = p(j1, t1)p(j2 − j1, t2 − t1) · · · p(jn − jn−1, tn − tn−1). (B.51)

The increments of a P-process are also stationary, although the P-process itself is not
stationary in a strict sense, since

1. E{Xt} = λt
2. E{XtXs} = λmin(t, s)

P-processes do not have almost surely continuous sample paths and are not almost
surely differentiable functions.

B.3 Markov Processes and Noise

In general, if the power spectrum has a finite effective frequency band, the process
is said to keep memory of its past. This is often described by means of a colored
noise. However, there are many physical situations of interest where the fluctuations
of a surrounding or environment are very fast. This gives rise to very broad effective
frequency bands, which may cover frequencies even higher than those characterizing
the system, described by some stochastic process Xt . In the limit τcorr = 0 or zero
memory, the subsequent values of the stochastic variables describing the process
at each time are independent, i.e., they are completely random. In these cases, the
changes induced in the system by the environment will essentially depend on the
strength of the latter fluctuations, increasing as such fluctuations become larger. For
example, consider an OU-process. If τcorr → 0 and σ →∞, the power spectrum is
constant (flat) and therefore its corresponding correlation function becomes a Dirac
δ-function. Actually, this δ-function can also be obtained from a Gaussian function
whose variance goes to zero, i.e.,
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δ(t − s) = lim
σ 2→0

1√
2πσ 2

e−(t−s)2/2σ 2
. (B.52)

A δ-correlated process, with a flat spectrum, is called a white noise, since all frequen-
cies are present and contribute equally, as in the case of white light. Since the OU-
process is a Gaussian process, in the no-memory limit this process is known as
Gaussian white noise. White noise can also be interpreted as the time-derivative of a
process with stationary independent increments. In this sense, Gaussian white noise
would be the time-derivative of a W-process; similarly, the same can be said for a
P-process. However, neither the W-process nor the P-process are differentiable in
the mean square sense. Thus, one can write

ξt = Ẇt, (B.53)

with E{Ẇt} = 0 and E{ẆtẆs} = δ(t − s).
Markov processes are stochastic processes with their time-evolution only

depending on the present time, thus displaying a very short memory—i.e., the past
history is rapidly forgotten. The hierarchy of joint probabilities can be reconstructed
from just two distribution functions. It can be shown that a system is Markovian if the
fluctuations are white, whereas non-Markovian systems are ruled by colored noise.
Accordingly, the mathematical condition for a process to be Markovian is

P(Xt ∈ B/Xtm = xm, . . . ,Xt1 = x1) = P(Xt ∈ B/Xtm = xm). (B.54)

This condition holds for all ordered set of times t1 < t2 < . . . < tm < t, for all
Borel sets B and all x1, x2, . . . , xm ∈ R

d . Thus, the probability of the event Xt ∈ B,
conditioned on m previous events, only depends on the latest event Xtm = xm,

p(x, t|xm, tm; . . . ; x1, t1) = p(x, t|xm, tm). (B.55)

This conditional probability is also called transition probability or propagator,

T(x, t|x′, t′) = p(x, t|x′, t′), (B.56)

which satisfies the following properties:

1.
∫

T(x, t|x′, t′)dx = 1 (normalization).
2. limt→t′ T(x, t|x′, t′) = δ(x − x′).

When the propagator only depends on the time-difference t′ − t, it is called homoge-
neous. In this sense, for example, the W-process is a homogeneous process in time,
although it is not stationary.

The so-called Chapman–Kolmogorov (CK) equation for the propagator is

T(x3, t3|x1, t1) =
∫

T(x3, t3|x2, t2)T(x2, t2|x1, t1)dx2, (B.57)

which in its differential version reads as

∂T(x, t|x′, t′)
∂t

= L(t)T(x, t|x′, t′), (B.58)
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where L(t) is a linear operator generating infinitesimal time translations,

L(t) ≡ lim
Δt→0

1

Δt

∫
T(x, t +Δt|x′, t)dx′ − δ(x − x′). (B.59)

For a homogeneous Markov process, L is time-independent. In this case, (B.59) can
be formally solved to give

Tτ (x|x′) = eLτ δ(x − x′), (B.60)

for τ ≥ 0. The one-parameter family {Tτ /τ ≥ 0} represents a dynamical semi-
group [17], since τ is restricted to nonnegative values. This fact is related to
irreversibility, which is the characteristic feature of any stochastic process. In other
words, the exponential operator is not invertible in the total space of all proba-
bility distributions. The simplest Markov process is given by a deterministic process:
ẋ = f (x), with x(t) ∈ R

d and f (x) ∈ R
d . Consider the phase flow associated with

such a differential equation is denoted by Φt(x) (see Chap. 1) and the phase curve
with time is obtained for a fixed x and initial conditionΦ0(x) = x.The corresponding
propagator is [17]

T(x, t|x′, t′) = δ(x −Φt−t′(x
′)), (B.61)

By appealing to the semigroup property Φt(Φs(x)) = Φt+s(x), it can be shown that
the CK equation is satisfied by the propagator (B.61). The differential CK equation
for a deterministic process is the Liouville equation,

∂T(x, t|x′, t′)
∂t

= −
∑

i

∂
[
fi(x)T(x, t|x′, t′)

]
∂xi

, (B.62)

where only the initial conditions are assumed to be random. The time-evolution of
this equation describes the deterministic drift.

Sometimes it is necessary to describe instantaneous jump processes. The corre-
sponding differential CK equation is then given by the master equation

∂tT(x, t|x′, t′) = L(t)T(x, t|x′, t′)

=
∫ [

W(x|x′′, t)T(x′′, t|x′, t′)−W(x′′|x, t)T(x, t|x′, t′)
]
dx′′,

(B.63)

where W(x|x′, t) is the transition rate accounting for the instantaneous jump from
the state x′ at time t to the state x. The total rate for a jump at time t, �(x′, t), is
obtained by integrating W(x|x′, t) over x,

Γ (x′, t) =
∫

W(x|x′, t)dx. (B.64)

http://dx.doi.org/10.1007/978-3-642-18092-7_1
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A more standard form for (B.63) is

∂p(x, t)

∂t
=

∫ [
W(x|x′, t)p(x′, t)−W(x′|x, t)p(x, t)

]
dx′, (B.65)

where p(x, t) is the probability density. The so-called Kramers–Moyal expansion
of the master equation can be obtained from a different rewriting of (B.63) after
performing an appropriate Taylor series expansion. This leads to a partial differential
equation of infinite order.

The continuity condition for Markov processes arises when the probability for a
transition, during an increment of time with size larger than a given small amount,
decreases more rapidly than the increment of time as it goes to zero. Diffusion
processes satisfy this condition, but they are not deterministic. The corresponding
differential CK equation is the Fokker–Planck equation expressed in terms of the
probability density,

∂p(x, t)

∂t
= −

∑
i

∂
[
gi(x, t)p(x, t)

]
∂xi

+ 1

2

∑
i,j

∂2
[
Dijp(x, t)

]
∂xi∂xj

, (B.66)

where gi and Dij are the first and second moments of the jump distribution (the
drift and diffusion coefficients, respectively). The D matrix is known as the diffusion
matrix, which is symmetric and positive semidefinite. The Fokker–Planck equation
(B.66) can be seen as a truncation of the Kramers–Moyal expansion to second order.
Moreover, it can also be recast as a continuity equation,

∂p(x, t)

∂t
+

∑
i

∂Ji(x, t)

∂xi
= 0, (B.67)

after defining the probability current density

Ji(x, t) = gi(x, t)p(x, t)− 1

2

∑
j

∂
[
Dijp(x, t)

]
∂xj

. (B.68)

Similar equations can also be written for the propagator.
Piecewise deterministic processes, arising from the combination of deterministic

and jump processes, are also very important in many applications of the theory of
open systems. The corresponding differential CK equation is known as the Liouville
master equation, which in terms of the propagator, reads as

∂T(x, t|x′, t′)
∂t

=−
∑

i

∂[gi(x, t)T(x, t|x′, t′)]
∂xi

+
∫
[W(x|x′′)T(x′′, t|x′, t′)−W(x′′|x)T(x, t|x′, t′)]dx′′.

(B.69)
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The so-called waiting time distribution, F(τ |x′, t′), is the probability for the next
jump to occur during the time interval [t′, t′+τ ] starting from x′ at time t′. Its general
expression is given by

F(τ |x′, t′) = 1− e−
∫ τ

0 dsΓ (Φs(x′)). (B.70)

If one has a pure jump process, the drift is zero and the waiting time distribution is
an exponential function.

If the propagator T(x, t|x′, t′) = Tt−t′(x − x′) is invariant with respect to space-
time translations, the stochastic process is a Lévy process [18, 19] (homogeneous
both in space and time). These two requirements allow to directly work with the
integral CK equation. Lévy processes are also stable if by performing a time scaling
the new process can be expressed as the original one multiplied by a scaling factor.
This property is called self-similarity or fractality.

B.4 Stochastic Differential Equations

In order to describe piecewise deterministic processes in terms of random variables
instead of probability densities or propagators, a stochastic differential equation
(SDE) is necessary to account for their time-evolution. For example, in the case of a
Gaussian white noise, the time-evolution of a one-dimensional random variable Xt

is governed by the SDE

dXt = f (Xt)dt + bg(Xt)dWt . (B.71)

In integral form, this equation reads as

Xt = X0 +
∫ t

0
f (Xs)ds+ b

∫ t

0
g(Xs)dWs, (B.72)

where the first integral can be understood as an ordinary Riemann integral, while
the b coefficient of the second one is related to the diffusion coefficient. This second
integral, on the contrary, is problematic due to the intrinsic properties of the W-
process. While the Riemann integral is independent of the different evaluation points
along the interval [0, t], the same does not hold for the stochastic integral. To obtain
an unambiguous definition of the stochastic integral, a choice of the evaluation points
has to be previously decided. Thus, if

τ
(n)
i = (1− α)t(n)i−1 + αt(n)i , (B.73)
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with 0 ≤ α ≤ 1 and t0 = t(n)1 < · · · < t(n)n = t, there are two reasonable choices
(which lead to desirable features):

1. The Itô integral, if α = 0.
2. The Stratonovich integral, if α = 1/2.

Although the latter conserves the ordinary rules of integration, the Itô integral is much
more appealing from a mathematical viewpoint, for it retains the important properties
of the W-process—indeed, for a white noise it is the only reasonable choice. The
integral of the quantity WsdWs within the interval [0, t] can be used to illustrate how
each one of these integration schemes works. In the case of Itô integration,

∫ t

t0
WsdWs = 1

2

[
(W2

t −W2
t0)− (t − t0)

]
, (B.74)

while in the case of Stratonovich integration, the integral becomes

∫ t

t0
WsdWs = 1

2

(
W2

t −W2
t0

)
. (B.75)

An important mathematical result establishes that any stochastic integral based on a
different choice of α can be expressed as the sum of the corresponding Itô integral
plus an ordinary Riemann integral.

Only a certain class of stochastic processes can be used in the Itô integral, the
so-called non-anticipating stochastic processes, Gt . These processes have the prop-
erty that Gt is only known from the past history of the W-process up to time t. That is,
Gt is independent of all increments of the W-process for times greater than t. Thus,
the stochastic process Yt =

∫ t
t0

Gs(ω)dWs(ω) is an Itô integral if:

1. Yt is a non-anticipating process.
2. Yt has almost surely continuous sample paths.
3. If

∫ t
t0

E{G2
s }ds <∞, then E{Yt} = 0 and E{YtYs} =

∫ min(t,s)
t0

E{G2
u}du.

4. E{Yt |Fs} = Ys (the martingale property) with s ≤ t;Fs with s ≥ 0 is a filtration
or family of sub-σ algebras of F if Fs ⊆ Ft ⊆ F , with s ≤ t.

The Stratonovich SDE is similar to the corresponding Itô one, but with the differ-
ence that integration follows the usual rules of the Riemann integral, as said above.
Thus, given a SDE, it is always possible to change of integration scheme or interpreta-
tion, Itô or Stratonovich. For additive noise (g(Xt) = constant), there is no difference
between both schemes. However, for multiplicative noise (g(Xs) �= constant), there
are important differences. Both integrals lead to mathematically consistent calculus.
However, the question on which form is the correct one to describe physical systems
has led to a very long controversy [20] and, in the end, the last word always comes
from the comparison with the experiment. In any case, the standard Langevin equa-
tion can always be expressed in terms of a SDE given by (B.71).

The Itô stochastic calculus is based on the fact that second order terms have to
be retained. Thus, whereas in ordinary calculus (dt)2 → 0 and dt dWt → 0, in
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stochastic calculus (dWt)
2 = dt. For example, given f = f (Wt, t), the Taylor series

expansion of f leads to

df (Wt, t) =
(
∂f

∂t
+ 1

2

∂2f

∂W2
t

)
dt + ∂f

∂Wt
dWt . (B.76)

A stochastic process Xt obeys an Itô SDE,

dXt = a(Xt, t)dt + b(Xt, t)dWt, (B.77)

whenever

Xt = Xt0 +
∫ t

t0
a(Xt′ , t′)dt′ +

∫ t

t0
b(Xt′ , t′)dWt′ (B.78)

for all t0 and t. If the solution of the Itô SDE is unique, then it is Markovian. If Xt

fulfills the Itô SDE and f is a functional of Xt and t, then

df (Xt, t) =
[
∂f (Xt, t)

∂t
+ a(Xt, t)

∂f (Xt, t)

∂Xt
+ 1

2
b2(Xt, t)

∂2f (Xt, t)

∂X2
t

]
dt

+ b(Xt, t)
∂f (Xt, t)

∂Xt
dWt,

(B.79)

which is known as Itô formula. It can be proven that if a and b depend explicitly on
time, the SDE defines a diffusion process. The stochastic equation is always linear
in dWt . A generalization to more than one dimension is quite straightforward.

Following the similar prescription, in general, given a function f (x(t), t) of
a vector stochastic variable x(t), a second-order series expansion in increments
leads to

df (x, t) = ∂f (x, t)

∂t
dt + ∇f (x, t) · dx + 1

2
∇2f (x, t)(dx)2. (B.80)

If x(t) satisfies the Itô SDE

dx(t) = a(x, t)dt + bdW(t), (B.81)

then

df (x, t) =
[
∂f (x, t)

∂t
+ a(x, t)∇f (x, t)+ 1

2
b2∇2f (x, t)

]
dt + b∇f (x, t)dW(t).

(B.82)
In this diffusion process, the probability distribution is described by the Fokker–
Planck equation

∂F(x, t)

∂t
= −∇ · [a(x, t)F(x, t)] + b2

2
∇2F(x, t). (B.83)
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In some applications it is also very useful to define the so-called mean forward and
backward derivatives of a given function f (x(t), t) [21],

D+f (x(t), t) = ∂f (x, t)

∂t
+ a+(x, t)∇̇f (x, t)+ 1

2
b2∇2f (x, t),

D−f (x(t), t) = ∂f (x, t)

∂t
+ a−(x, t)∇̇f (x, t)− 1

2
b2∇2f (x, t),

(B.84)

respectively, where D+x(t) = a+(x, t) and D−x(t) = a−(x, t). If x(t) defines the
position of a given particle and is symmetric under time reversal, i.e., x(t) = x(−t),
the corresponding Itô SDEs are

dx(t) = a+(x, t)dt + bdW(t),

dx(t) = a−(x, t)dt + bdW−(t),
(B.85)

where E[dW−(t) · dW−(t)] = |dt| = −dt for the reverse time flow. The Newtonian
velocity is then defined as the mean velocity (or flow velocity) of a Brownian particle,

v(x, t) = 1

2

[
a+(x, t)+ a−(x, t)

]
. (B.86)

If both derivatives are not equal, their difference defines the vector field

u(x, t) = 1

2

[
a+(x, t)− a−(x, t)

]
, (B.87)

which is called the osmotic velocity [21]. Similarly, a mean acceleration can be
defined as

A(x, t) = 1

2

[
D+a−(x, t)+ D−a+(x, t)

]
. (B.88)

One of the central aspects of stochastic dynamics is the concept of noise-induced
transition. Under some conditions, the influence of environmental fluctuations can
be far from being negligible. Indeed, the effect of external noise may depend on the
system state. A transition takes place at points of the parameter space (mean value of
the external noise, its variance, its correlation time, etc.) where the functional form of
the mapping from the sample space into the state space changes qualitatively—e.g.,
the number and location of extrema of the stationary probability density [5]. This
probability density is usually written in terms of a “probability” potential which is
subject to topological analysis. It can be shown that only when the external noise is
multiplicative, new potential wells or states can be created and some of the existing
ones will be destroyed. In this regard, it is of particular interest the so-called stochastic
resonance mechanism [22].
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B.5 Stochastic Processes in Quantum Mechanics

In quantum mechanics, the general probability theory has to be applied in a rather
different way, within the context of Hilbert spaces H and noncommuting algebras
of operators, variables and observables or measurable quantities. Details on the
mathematical notions involved in the formulation of this theory and its statistical
interpretation [23, 24], and more particularly in the theory of measurement [17, 25],
will not be accounted for here. Only those elements which are more closely related to
the issues considered throughout this monograph are briefly discussed. To simplify
the notation, both the random variable and its Hermitian operator will be denoted by
the same symbol A, being easy to discern when the latter plays the role of a variable
or an operator, respectively.

The basic tool when dealing with statistical mixtures is the statistical or density
operator ρ. This operator has to be understood as describing a statistical ensemble
consisting of a large number, N, of identical quantum systems prepared in the
following way: M sub-ensembles each one described by a normalized state vector
ψn(n = 1, · · · ,M) formed by Nn elements. Accordingly, the density operator
reads as

ρ =
∑

n

wn|ψn〉〈ψn|, (B.89)

where the statistical weight of each state is given by wn = Nn/N, with N =∑M
n=1 Nn. The density operator is Hermitian or self-adjoint, positive and with trace

equal to one. A further discussion on the density operator and its properties can be
found, for example, in [24, 26].

An observable via its spectral family leads to a real random variable, which
describes the probabilities for all possible measurement outcomes. The sample space
is the real axis and the algebra of events B is given by the Borel sets of the real axis.
Thus,

E{A} = Tr {Aρ} ≡ 〈A〉, (B.90)

where Tr stands for the trace operation. Within this context, the associated variance,
which renders information about the dispersion of A, reads as

σ(A) ≡ (ΔA)2 = Tr {A2ρ} − ( Tr {Aρ})2 ≡ 〈A2〉 − 〈A〉2. (B.91)

That is, according to this expression, there are no dispersion-free measurements.
Observables are the result of measurements and therefore display fluctuations

around some average value. These average values can be obtained from pure or
mixed state.2 In the case of a pure state, if it corresponds with an eigenvector of A,
the fluctuation is zero. However, those values have nothing to do with the typical

2 The distinction between pure and mixed states is usually characterized by the definition of the
convex linear combination in the convex set of density operators in the Hilbert space. Thus, ρ is a



Appendix B: Stochastic Processes 289

errors associated with the measuring devices. In this regard, Heisenberg’s uncertainty
principle relates very precisely the fluctuations of two non-commuting operators,
stating that the corresponding observables cannot be simultaneously measured with
an infinite precision. Usually, after a measurement the system is projected in an
eigenstate of the measuring device (ideal measurement). However, not always this
is the case. Indeed, within the context of the quantum theory of measurement [25],
Aharonov et al. [27] introduced the definition of weak measurement. This concept is
based on assuming that the coupling between measuring device and observed system
can be set so weakly that the uncertainty associated with a single measurement is still
very large compared with the separation between the observable eigenvalues. Hence,
after a weak measurement the system is not left in an eigenstate of the observable,
but rather in a superposition of the unresolved eigenstates. This procedure is useful
for the amplification and detection of weak effects [28–30], e.g., a direct detection
of the photon wave function [9] or the associated photon trajectories [31].

In the case of dissipative and/or stochastic dynamics, the operator δA = A −
〈A〉 is also called a fluctuation, and it can be shown that (Δ(δA))2 = (ΔA)2 (see
(B.9)). When one is interested in the average moments 〈An〉 (n being an integer)
of a given operator A, sometimes it is more convenient to evaluate the so-called
characteristic function of A, 〈eiξA〉, where ξ is a real parameter—note that the nth
moment arises from the partial differentiation with respect to iξ of nth order and
evaluated at ξ = 0.Moreover, the Fourier transform of the characteristic function of
A gives the probability distribution function or diagonal matrix elements of the density
operator in the representation in which A is diagonal. In this regard, for example,
the Wigner, Poisson and exponential distribution functions can be expressed as the
Fourier transform of a given characteristic function [26]. When a set of observables
commute, a characterization by joint probability distributions is also possible. For the
particular case of the Wigner distribution, which is given in terms of the phase space
coordinates (e.g., the position and momentum of a particle), see for example [26].

The noise in quantum mechanics has to be treated with some special care. For
example, in the quantum Langevin equation the noise is a quantum operator and
the noise (symmetric) autocorrelation function is a complex quantity because, in
general, it does not commute at different times. At very low or zero temperatures,
the noise is still correlated at very long times [32, 33]. Furthermore, it is not propor-
tional to a Dirac delta function in time. Thus, we have the situation that, although
there is no memory in the standard Langevin equation, the quantum process is not
Markovian [34].

When dealing with open quantum systems, the total Hamiltonian is often expressed
as the sum of the Hamiltonian accounting for the quantum system of interest (S), the
Hamiltonian accounting for the environment (B) and their coupling. A measuring
device can also be seen as an environment [17]. Many times, though, only the

convex linear combination of ρ1 and ρ2 when

ρ = αρ1 + (1− α)ρ2,

with α ∈ [0, 1]. If ρ describes a pure state, then ρ = ρ1 = ρ2.
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dynamics of the system of interest is relevant, which is obtained after tracing out
over the environment (or bath) degrees of freedom. This gives rise to a reduced
system dynamics, which is no longer unitary in time. Quantum Markov processes
represent the simplest description of open (quantum) system dynamics. However,
the extension of Markov processes to quantum mechanics requires the definition of
a quantum dynamical semigroup [17]. Thus, consider a general dynamical map V(t)
which describes the transformation over time

ρS(t) = V(t)ρS(0),

where ρS ≡ TrB(ρ) is the reduced density operator or reduced density matrix. This
map represents a convex-linear, completely positive and trace-preserving quantum
operation. A quantum dynamical semigroup is defined as follows:

1. If V(t) defines a continuous, one-parameter family of dynamical maps by varying
t (with t ≥ 0).

2. The Markov approximation for the homogeneous case is assumed.
3. The semigroup property V(t)V(s) = V(t + s), with t, s ≥ 0, holds.

This gives rise to a first-order linear differential equation for the reduced density
operator, the so-called Linblad equation,

ρ̇S(t) = LρS(t), (B.93)

where the generator L of the semigroup is a super-operator, since its action over
operators yields another operator.

Coherence is a key issue in different branches of quantum mechanics. The oppo-
site effect, decoherence, it appears when a quantum interference pattern is destroyed
or suppressed. In a certain sense, it could be said that decoherence leads to the appear-
ance of a classical world in quantum mechanics. Environment induced decoherence
[25] is omnipresent and, in general, it is a short time phenomenon. When measuring,
the dynamics of the system tends to be decoherent. In the weak coupling approxima-
tion between the system and environment, the trace operation carried out to obtain
the reduced density matrix is key to the existence of any master equation. However,
this operation is questionable when the system and environment are entangled at all
times, including the initial state. The role of the initial conditions has also be widely
discussed in the corresponding literature.

In order to define the state vector as a random variable in Hilbert space, it is
necessary a new type of quantum-mechanical ensembles, which are not fully char-
acterized by a density matrix [17]. This new ensemble is formed by M statistical
ensembles of the type described above to define the statistical operator. Each one of
the M ensembles consists of Nn elements prepared in a normalized state |ψn〉, in such
a way that N = ∑M

n=1 Nn. This is the new sample space, where wn is the measure
corresponding to the ensemble characterized by the state vector |ψn〉.

Different types of measurements can be defined from different probability density
functionals, P[ψ]. For example, for a subset A, such that A ∈ A,
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μ(A) =
∫

A
DψDψ∗P[ψ]. (B.94)

If P[ψ] = δ(ψ−ψ0), one obtains the Dirac measure. The volume element in Hilbert
space can be chosen to be the Euclidean volume element [17]. The expectation values
are then obtained from

E{F[ψ]} =
∫

DψDψ∗P[ψ]F[ψ] (B.95)

for a functional F[ψ]—e.g., F[ψ] = Tr {Aρ} = 〈ψ |A|ψ〉. Taking into account this
new ensemble, the density operator can then be represented as

ρ = E{|ψ〉〈ψ |} =
∫

DψDψ∗P[ψ]|ψ〉〈ψ |. (B.96)

The time-dependence of the state vector leads to stochastic processes |ψ(t)〉 in
Hilbert space, where the probability density functional is P[ψ, t]. The dynamics of
the open quantum system can then be described by a differential stochastic equation
for |ψ(t)〉 instead of a master equation. This is the idea behind what it is termed
as unravelling of the master equation. The evolution in time of P[ψ, t] can be
expressed as

P[ψ, t] =
∫

DφDφ∗T [ψ, t|φ, t0]P[φ, t0], (B.97)

where T gives the conditional transition probability. Nevertheless, a similar prescrip-
tion as before can be followed, which allows to describe the time-evolution of the
wave function as a diffusion process. This process is governed by a SDE,

d|ψ(t)〉 = −iK{|ψ(t)〉}dt + bM{|ψ(t)〉}dW(t), (B.98)

where K is a drift operator and M is related to a certain diffusion operator. As can be
noticed, here the noise is multiplicative, since the coefficient accompanying dW(t)
is not a constant (it depends on the wave function itself). This noise may lead to
transitions, namely noise-induced transitions, which is an important aspect of the
stochastic dynamics not fully developed yet.
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Fraunhofer region, 190–191, 253–254
Free-diffusion regime, 62
Frequency spectrum, 278
Fresnel approximation, 128, 131–133
Fresnel diffraction, 128
Fresnel region, 190–191, 253–254
Fresnel integral, 110
Fresnel-Kirchhoff diffraction formula, 128

G
Gaussian white noise, 59, 170, 281
Generalized susceptibility function, 168
Generating function, 6
Geodesic, 2
Geometric optics, 8, 79, 84, 108, 121, 132,

146, 148, 233, 236, 238, 240, 243
Geometric shadow, 122, 126, 233
Glory effect, 24, 68, 198
Goos–Hänchen effect, 144
Grating

diffracting, 136
multiple-slit, 253
periodic, 125
Ronchi, 137, 253

H
Hamilton equations of motion, 6, 10, 12, 25,

99, 115, 236
symplectic form, 6, 54

Hamilton–Jacobi equation, 7, 70, 207
Caldirola–Kanai, 51
complex quantum, 201
quantum, 29, 111, 189, 192, 201, 215
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stochastic, 68
time-independent, 8

Hamilton principle, 3–5, 79, 146, 232
Hamiltonian analogy, 75–76, 78, 238
Hamilton principal function, 7, 111
Hamiltonian system, 6
Hartman effect, 144
Heat equation, 41, 54
Helmholtz condition, 50
Helmholtz equation, 79, 124, 140, 147–148,

244
Hermann–Kluk propagator, 113, 177
Homogeneous process, 281
H-theorem, 29
Huygens construction, 7, 103, 125
Huygens-Fresnel integral, 132–134, 136
Huygens-Fresnel principle, 124–126
Huygens principle, 125–126, 206
Hydrodynamic derivative, 40

I
Imbert–Fedorov effect, 144
Interference

constructive, 108, 128–129, 131, 134, 257
destructive, 108, 128–129, 131
pattern, 125, 233

Intermediate scattering function, 64, 167
quantum, 171, 174, 176

Inverse problem, 9, 50
Irreversibility, 29, 47, 282
Irreversible process, 47
Itô integral, 219, 285
Itô stochastic differential equation, 68,

286–287

J
Jacobian determinant, 16, 26, 103, 112
Jacobi law of motion, 7, 236
Jacobian matrix, 111
Joint probability density, 272
JWKB approximation, 108, 208, 240

K
Kolmogorov fundamental theorem, 276
Kolmogorov–Arnold–Moser

heorem, 17, 19
Kramers–Chandrasekhar equation, 65
Kramers-Kronig (dispersion) relations, 168
Kramers–Moyal expansion, 283
Kramers turnover problem, 66, 165

L
Lévy distribution, 22, 284
Lagrange equations of motion, 4, 33, 50
Lagrange multiplier, 267
Lagrangian derivative, 40, 215
Lagrangian function, 4
Least action principle, 2–3, 75, 145, 206, 232
Least time principle, 2–3
Lévy flight, 22
Lévy process, 22
Lévy walk, 22
Linblad equation, 154, 178, 181, 218, 290
Linear response function, 168
Linear response theory, 28, 40, 48, 154, 171
Liouville equation, 48, 58, 63

classical, 25–28, 30, 31
generalized, 26

quantum, 27, 86, 179
reduced, 65
stochastic, 63

Liouville master equation, 181, 283
Liouville-von Neumann equation, 218
Liouville operator, 25, 86
Liouville superoperator, 180
Lyapunov exponent, 15, 16

M
Markovian approximation, 59, 68, 165, 170
Markovian process, 57, 64, 155, 281–283, 289
Martingale, 285
Maslov index, 112
Mass continuity equation, 40
Matsubara frequency, 173, 176
Maxwell equations, 122, 138, 145, 234, 244,

252
Mean acceleration, 69–70, 287
Mean backward derivative, 69, 286
Mean de Broglie wavelength, 168
Mean forward derivative, 69, 286
Mean square displacement, 19, 21, 58, 62, 174
Mirror–image system, 53
Moyal brackets, 98–99
Multiplicative noise, 68, 182, 285, 287, 291

N
Navier–Stokes equation, 41, 199, 221
Newton equations of motion, 4, 236
Noise, 280

colored, 48, 280
white, 48, 60, 281

Gaussian, 59–61, 281, 284
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N (cont.)
Noise-induced transition, 58, 287, 291
Non-anticipating stochastic process, 285
Non-crossing property, 26, 38–39
Nonlinear Schrödinger equation, 156, 159, 161
Nonlocality, 1, 190, 193, 203, 219
Normal mode, 34, 56
Nöther theorem, 50
Number density operator, 167

O
Ohmic friction, 57, 68, 159, 170
Onsager regression hypothesis, 28, 40, 48, 155
Optical black hole, 144
Optical fiber, 138
Orbiting singularity, 24
Osmotic velocity, 69–70, 219, 287

P
Pair correlation function, 166
Paraxial approximation, 134, 148
Phase point, 25
Phase space, 25
Photon path, 233, 243, 245, 258
Piecewise deterministic process, 284
Poincaré, 47

map, 16–18
recurrence time, 47
surface of tension, 16–17, 19
Bendixon theorem, 15

Poisson bracket, 9, 26, 106, 157
Pollicott–Ruelle resonance, 21
Power spectrum, 10, 280
Probability current density, 30, 40, 81,

91, 109, 162, 200, 210, 217,
244, 283

Probability density functional, 181, 290–291
Propagator, 102–103, 113, 177, 180, 281

IVR, 113
semiclassical, 108, 113
Van Vleck, 113, 177

Q
Quantum dynamical semigroup, 179–181, 290
Quantum eraser, 255
Quantum Hamilton-Jacobi equation, 111
Quantum noise, 115, 165, 172
Quantum potential, 109, 115, 189–191, 201,

211–215
Quantum trajectory, 115, 181, 187, 210
Quantum Zeno effect, 156, 170

R
Radon–Nikodym theorem, 273
Rainbow angle, 242
Rainbow effect, 24, 68, 198, 242
Random process, 275
Random variable, 270

characteristic function, 273
conditional expectation variable, 273,

274
continuous, 270, 272
discrete, 272
generating function, 273
state vector, 291
vector, 270

Randomization, 57
Ray, 3, 8, 24, 79, 122, 132, 138, 146, 148,

231, 233, 237–238, 240,
242–243

Realization, 60, 181, 270, 276–278, 280
Recurrence, 155
Reduced density matrix, 154, 164, 178, 179,

181, 217, 290
Regular system, 9
Riemann–Silberstein vector, 146–147, 252,

258

S
Self-similarity, 284
Skipping singularity, 24
Smoluchowski equation, 66, 165
Snell law, 138
Sollfrey model, 55
Spectral density, 165
Stationary phase method, 110, 113, 242
Stationary point, 16, 132, 177
Stationary trajectory, 132, 245, 253, 264
Steepest descent method, 110, 242
Stochastic differential equation, 59, 181, 220,

284, 291
Stochastic process, 59

ergodic, 63
fluctuation, 67
Lévy, 270
Markovian, 276
multivariate, 289
Ornstein–Uhlenbeck, 273
Poisson, 273
stationary, 273

correlation function, 273
correlation time, 284

Wiener, 223
Stochastic resonance, 287
Stochastic Schrödinger equation, 181
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Stochastic trajectory, 276
classical, 59–60, 64, 206
quantum, 218

Stochastic (random) variable, 282
Stochasticity, 48, 58
Stochastization, 57
Stratonovich integral, 285
Stratonovich stochastic differential equation,

285
Streamline, 40
Strong friction, 66, 165
Strong measurement, 155, 243

T
Theory of measurement, 85, 187, 288–289
Time correlation function, 28, 63, 181
Total internal reflection, 138–139, 142, 144

frustrated, 139, 143–144
Transition probability, 104, 281

conditional, 270, 281, 291
Transition rate, 163, 282
Tunneling, 56, 83, 90, 143–144, 163, 178, 240

acoustic, 93
driven, 178
optical, 142, 144
photon, 93

Tyndall effect, 138

U
Ullersma model, 55, 58, 163
Uncertainty principle, 82, 90, 156, 158, 197,

289
Unraveling, 181, 291

V
Van Kampen model, 55
Variance, 271, 280, 287, 288
Variational principle, 1, 50, 80, 267

Hamilton, 3

W
Waiting time distribution, 284
Waveguide, 93, 138, 146, 148, 231
Weak coupling limit, 36, 164
Weak friction, 66, 178
Weak measurement, 155, 156, 254, 289
Weak trajectory, 182
Weak value, 155, 156, 222
Wick rotation, 12, 56, 178

Y
Young’s double slit, 130, 233, 250, 254
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